Publications by authors named "Jin Oh Chung"

Article Synopsis
  • - The study investigated how polystyrene microplastics (MPs) of different charges and sizes are absorbed by intestinal cells and examined the protective effects of green tea extracts (GTEs) against this absorption in Caco-2 cells.
  • - Smaller, amine-modified MPs (0.2 μm) were found to significantly reduce cell viability compared to larger MPs and carboxylate-modified variants, suggesting size and charge influence toxicity.
  • - Co-treatment with GTEs not only reduced the cytotoxic effects of amine-modified MPs but also improved the intestinal barrier function by limiting MP absorption and enhancing cell integrity.
View Article and Find Full Text PDF

Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols.

View Article and Find Full Text PDF

Bioactive peptides (BPs) are protein fragments that benefit human health. To assess whether leftover green tea residues (GTRs) can serve as a resource for new BPs, we performed in silico proteolysis of GTRs using the BIOPEP database, revealing a wide range of BPs embedded in GTRs. Comparative genomics and the percentage of conserved protein analyses enabled us to select a few probiotic strains for GTR hydrolysis.

View Article and Find Full Text PDF

Unlabelled: The purpose of the current study was to examine the effect of adding secondary ingredients such as green tea derived water-soluble polysaccharides (GTP) and flavonol aglycone rich fractions derived from cellulase treated green tea extract (FVN) into catechin rich green tea extracts (GTE) on wheat starch digestion and intestinal glucose transport using in vitro digestion with Caco-2 cells. Co-digestion of wheat starch with GTE (16.88 g L) or GTE + GTP + FVN (16.

View Article and Find Full Text PDF

The purpose of the current study was to investigate the effect of various characterized green tea extracts (GTEs) according to extraction methods on enzymatic starch hydrolysis and intestinal glucose transport. Codigestion of wheat starch with water extract (WGT) or ethanol extract formulated with green tea polysaccharides and flavonols (CATEPLUS) produced 3.4-3.

View Article and Find Full Text PDF

The purpose of the current study was to investigate the effect of green tea ethanol extract (GTE) and polysaccharide fractions from green tea (PFGs) on the hydrolysis of wheat starch, microstructural changes, and intestinal transport of glucose. The amount of resistant starch (RS) was significantly lowered in the water-soluble polysaccharide (WSP), water-soluble polysaccharide-pectinase (WSP-P), and water-insoluble polysaccharide-alkali soluble (WISP-Alk-Soluble; < 0.05).

View Article and Find Full Text PDF

The aim of this study was to profile the bioaccessibility and intestinal absorption of epicatechins and flavonols in different forms of green tea and its formulation: loose leaf tea, powdered tea, 35% catechins containing GTE, and GTE formulated with green tea-derived polysaccharide and flavonols (CATEPLUS™). The bioaccessibillity and intestinal absorption of epicatechins and flavonols was investigated by using an in vitro digestion model system with Caco-2 cells. The bioaccessibility of total epicatechins in loose leaf tea, powdered tea, GTE, and CATEPLUS™ was 1.

View Article and Find Full Text PDF

Background: Water soluble polysaccharide derived from green tea (WSP) is produced as byproducts when catechins were extracted from green tea. Although inhibitory effect of green tea catechins on the glucose transport in small intestine has been studied, the hypoglycemic efficacy of the WSP or its combinational effect has not been studied. In order to investigate hypoglycemic efficacy of the WSP or its combinational effect with green tea extract (GTE), co-consumption of GTE and WSP with wheat starch was investigated using in vitro digestion coupled with Caco-2 cells.

View Article and Find Full Text PDF

It was revealed that excipient ingredients such as flavonols (FVN) or polysaccharides (GTP) which could be derived from green tea enhanced catechin absorption. We hypothesized that the addition of FVN or GTP as excipient ingredients into epicatechin rich green tea extracts (GTE) may improve the health benefits that accompany its consumption. When FVN8.

View Article and Find Full Text PDF

Background: extract (SQE) or dwarf bamboo has been extensively investigated for its antioxidant and anti-inflammatory effects; however, no previous study assessed its effect as an antidepressant agent. Therefore, this study was designed to examine the effect of oral SQE administration in ameliorating menopausal depressive symptoms and to evaluate its mechanisms in ovariectomized rats with repeated stress.

Methods: All experimental groups except normal group underwent ovariectomy and then immobilization for 14 consecutive days.

View Article and Find Full Text PDF

Green tea is being studied extensively for its postprandial hypoglycemic effect due to its abundant catechins. Along with catechins, water-soluble green tea polysaccharides are also currently gaining attention due to their natural hypoglycemic properties. The current study investigated the combinational effect of green tea extract (GTE) and crude green tea polysaccharides (CTP) in inhibiting glucose transport after digestion of rice starch, using an in vitro digestion model with a Caco-2 cell.

View Article and Find Full Text PDF

Quercetin and fisetin, known as catechol-containing flavonoids, could positively affect the absorption of catechins due to their strong affinity for catechol-O-methyl transferase (COMT), which can methylate and cause the excretion of catechins. The current study examined the effect of quercetin and fisetin on the absorption of epi-catechins (ECs) by using a Caco-2 cell line and an in vivo model. The intestinal transport of total catechins by Caco-2 cells was enhanced from 1.

View Article and Find Full Text PDF

The impacts of onion peel (OP) and Dendropanax morbifera (DM), as excipient foods rich in flavonols, on the digestive recovery, intestinal absorption, and pharmacokinetics of GT epicatechins were studied via an in vitro digestion model system with Caco-2 cells and an in vivo study. The digestive stability of total epicatechins recovered from GT upon the addition of 2% DM was up to 1.12 times higher than that observed with OP.

View Article and Find Full Text PDF

Background: This study was aimed at assessing the therapeutic efficacy of green tea on peripheral skin for cold hypersensitive subjects, who had the feeling of cold hands and feet at cold temperatures, one of the most common complaints in Asian women.

Methods: This randomized and placebo-controlled clinical study included 60 female Korean subjects who had the feeling of cold hands and feet at cold temperatures. The subjects were randomly assigned into two groups to receive fermented green tea or a placebo (hot water).

View Article and Find Full Text PDF

Numerous factors such as geographical origin, cultivar, climate, cultural practices, and manufacturing processes influence the chemical compositions of tea, in the same way as growing conditions and grape variety affect wine quality. However, the relationships between these factors and tea chemical compositions are not well understood. In this study, a new approach for non-targeted or global analysis, i.

View Article and Find Full Text PDF

Background: The purpose of this study was to investigate the effect of hydroxypropyl methyl cellulose phthalate (HPMCP) coating on the digestive stability and intestinal transport of green tea catechins (GTCs).

Methods: Two types of HPMCP coating were prepared: one type with size smaller than 500 μm (S-HPMCP) and the other with size larger than 500 μm (L-HPMCP). An gastrointestinal model system coupled with Caco-2 cells was used for estimating the bioavailability of GTCs.

View Article and Find Full Text PDF

The effect of green tea formulated with vitamin C and xylitol on intestinal cell transport of gallated and nongallated catechin was studied. The transport of catechins from both apical to basolateral and basolateral to apical directions was measured. The effect of vitamin C (4, 10, 20 ppm), xylitol (11, 27.

View Article and Find Full Text PDF

Multiple treatment modalities, including topical and systemic corticosteroid and phototherapy, have been used in treatment of patients with atopic dermatitis. However, long-term corticosteroid therapy may have various adverse effects. The purpose of this study was to investigate the therapeutic efficacy and safety of bath therapy using green tea extracts for treatment of patients with atopic dermatitis.

View Article and Find Full Text PDF

Various kinds of positive effects of green tea extracts had been studied for long time which included anti-inflammation, anti-aging, and cardiometabolic effects. Although topical steroid and non-steroidal calcineurin inhibitors may control clinical symptoms of allergic contact dermatitis, some of patients also present allergic reaction to these topical agents. Therefore, we have tried green tea extracts for managing this skin disorder with expectation of anti-inflammatory effect without potential side effects including skin irritation and toxic responses.

View Article and Find Full Text PDF

The dependence of global green tea metabolome on plucking positions was investigated through (1)H nuclear magnetic resonance (NMR) analysis coupled with multivariate statistical data set. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), were employed for a finding metabolic discrimination among fresh green tea leaves plucked at different positions from young to old leaves. In addition to clear metabolic discrimination among green tea leaves, elevations in theanine, caffeine, and gallic acid levels but reductions in catechins, such as epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG), glucose, and sucrose levels were observed, as the green tea plant grows up.

View Article and Find Full Text PDF

The effects of climatic conditions on green tea metabolites in three different growing areas of Jeju Island, South Korea, were investigated through global metabolite profiling by (1)H nuclear magnetic resonance (NMR) spectroscopy. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), revealed clear discriminations of green teas from the three different growing areas. Variations of theanine, isoleucine, leucine, valine, alanine, threonine, glutamine, quinic acid, glucose, epicatechin (EC), epigallocatechin (EGC), epigallocatechin-3-gallate (EGCG), and caffeine levels were responsible for the discriminations.

View Article and Find Full Text PDF

As tea is traded all over the world, it is necessary for both customs officers and business investigators to develop an easy and reliable method to discriminate teas from each other. A total of 56 kinds of various green, Oolong, and black teas were collected from different countries and markets, and their catechin contents and volatile flavour compounds (VFC) were compared by analyses, using HPLC and solid-phase microextraction-gas chromatograph (SPME-GC). It was found that neither total catechin nor individual catechin contents in green and Oolong teas were significantly different among the samples investigated, but the fermentation processes altered the profiles of tea VFC.

View Article and Find Full Text PDF