We constructed a xylose-utilizing Saccharomyces cerevisiae strain using endogenous xylose-assimilating genes (strain K7-XYL). Such self-cloning yeast is expected to make a great contribution to cost reduction of ethanol production processes. However, it is difficult to modify self-cloning yeast for optimal performance because the available gene source is limited.
View Article and Find Full Text PDFObjectives: To genetically engineer Saccharomyces cerevisiae for improved ethanol productivity from glucose/xylose mixtures.
Results: An endogenous gene cassette composed of aldose reductase (GRE3), sorbitol dehydrogenase (SOR1) and xylulose kinase (XKS1) with a PGK1 promoter and a terminator was introduced into two S. cerevisiae strains, a laboratory strain (CEN.
Recombinant Mycobacterium sp. strain MR65 harboring dszABCD genes was used to desulfurize alkyl dibenzothiophenes (Cx-DBTs) in n-hexadecane. The specific desulfurization activity for 2,4,6,8-tetraethyl DBT (C8-DBT) by DszC enzyme was about twice that for 4,6-dipropyl DBT (C6-DBT).
View Article and Find Full Text PDFRhodococcus erythropolis IGTS8 that possesses dibenzothiophene sulfone monooxygenase mutated at residue 345 (Q345A), can degrade octyl sulfide on which the wild strain cannot grow. Residue 345 and the neighbouring residues were changed by site-directed mutagenesis. Only DszA changed at residue 345 gave an altered C-S bond cleavage pattern of 3-methyl DBT sulfone.
View Article and Find Full Text PDF