The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2022
Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-likelike 2 (NELL2) on PPE gene expression.
View Article and Find Full Text PDFThe hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood.
View Article and Find Full Text PDFA brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. hybridization and an im-munohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus.
View Article and Find Full Text PDFProlyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls.
View Article and Find Full Text PDFObesity and metabolic disorders, such as type 2 diabetes and hypertension, have attracted considerable attention as life-threatening diseases not only in developed countries but also worldwide. Additionally, the rate of obesity in young people all over the world is rapidly increasing. Accumulated evidence suggests that the central nervous system may participate in the development of and/or protection from obesity.
View Article and Find Full Text PDFWe found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.
View Article and Find Full Text PDFProlyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain.
View Article and Find Full Text PDFThe classic estrogen 17β-estradiol (E2) was recently identified as a novel modulator of hearing function. It is produced rapidly, in an experience-dependent fashion, by auditory cortical neurons of both males and females. This brain-generated E2 enhances the efficiency of auditory coding and improves the neural and behavioral discrimination of auditory cues.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) knockout mice are prone to excess energy storage and adiposity, whereas mutations in FAAH are associated with obesity in humans. However, the molecular mechanism by which FAAH affects energy expenditure (EE) remains unknown. Here we show that reduced energy expenditure in FAAH(-/-) mice could be attributed to decreased circulating triiodothyronine and thyroxine concentrations secondary to reduced mRNA expression of both pituitary thyroid-stimulating hormone and hypothalamic thyrotropin-releasing hormone.
View Article and Find Full Text PDFProlyl endopeptidase (PREP) is a phylogenetically conserved serine protease and, in humans and rodents, is highly expressed in the brain. Several neuropeptides associated with learning and memory and neurodegenerative disorders have been proposed to be the substrates for PREP, suggesting a possible role for PREP in these processes. However, its physiological function remains elusive.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
June 2012
α-Melanocyte-stimulating hormone (α-MSH) is a critical regulator of energy metabolism. Prolyl carboxypeptidase (PRCP) is an enzyme responsible for its degradation and inactivation. PRCP-null mice (PRCP(gt/gt)) showed elevated levels of brain α-MSH, reduced food intake, and a leaner phenotype compared with wild-type controls.
View Article and Find Full Text PDFHypothalamic α-melanocyte-stimulating hormone (α-MSH) plays a central role in regulating energy uptake and expenditure. Prolyl carboxypeptidase (PRCP), a protease expressed in the hypothalamus, is responsible for the degradation of α-MSH. PRCP null animals (PRCP(gt/gt) mice) display elevated α-MSH in the hypothalamus, lower body weight, and are protected from diet induced obesity.
View Article and Find Full Text PDFPrevious studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice.
View Article and Find Full Text PDFThe classic steroid hormone estradiol is rapidly produced by central auditory neurons in the songbird brain and instantaneously modulates auditory coding to enhance the neural and behavioral discrimination of acoustic signals. Although recent advances highlight novel roles for estradiol in the regulation of central auditory processing, current knowledge on the functional and neurochemical organization of estrogen-associated circuits, as well as the impact of sensory experience in these auditory forebrain networks, remains very limited. Here we show that both estrogen-producing and -sensitive neurons are highly expressed in the caudomedial nidopallium (NCM), the zebra finch analog of the mammalian auditory association cortex, but not other auditory forebrain areas.
View Article and Find Full Text PDFNELL2, a protein containing epidermal growth factor-like repeat domains, is predominantly expressed in the nervous system. In the mammalian brain, NELL2 expression is mostly neuronal. Previously we found that NELL2 is involved in the onset of female puberty by regulating the release of gonadotropin-releasing hormone (GnRH), and in normal male sexual behavior by controlling the development of the sexually dimorphic nucleus of the preoptic area (POA).
View Article and Find Full Text PDFGABAergic transmission influences sensory processing and experience-dependent plasticity in the adult brain. Little is known about the functional organization of inhibitory circuits in the auditory forebrain of songbirds, a robust model extensively used in the study of central auditory processing of behaviorally relevant communication signals. In particular, no information is currently available on the expression and organization of GABAA receptor-expressing neurons.
View Article and Find Full Text PDFThe zRalDH gene encodes an aldehyde dehydrogenase associated with the conversion of retinaldehyde (the main vitamin A metabolite) into retinoic acid and its expression is highly enriched in the song control system of adult zebra finches (Taeniopygia guttata). Within song control nucleus HVC, zRalDH is specifically expressed in the neurons that project to area X of the striatum. It is also expressed in paraHVC, commonly considered a medial extension of HVC that is closely associated with auditory areas in the caudomedial telencephalon.
View Article and Find Full Text PDF