Publications by authors named "Jin Jian"

Erythropoietin (EPO) is a hormone that induces red blood cell production. In its recombinant form, EPO is the one of most prescribed drugs to treat anemia, including that arising in cancer patients. In randomized trials, EPO administration to cancer patients has been associated with decreased survival.

View Article and Find Full Text PDF

Real-time, or quantitative, reverse transcription polymerase chain reaction (qRT-PCR), is a powerful method for rapid and reliable quantification of mRNA abundance. Although it has not featured prominently in flower development research in the past, the availability of novel techniques for the synchronized induction of flower development, or for the isolation of cell-specific mRNA populations, suggests that detailed quantitative analyses of gene expression over time and in specific tissues and cell types by qRT-PCR will become more widely used. In this chapter, we discuss specific considerations for studying gene expression by using qRT-PCR, such as the identification of suitable reference genes for the experimental setup used.

View Article and Find Full Text PDF

Combinatorial synthesis and screening for discovery of electrocatalysts has received increasing attention, particularly for energy-related technologies. High-throughput discovery strategies typically employ a fast, reliable initial screening technique that is able to identify active catalyst composition regions. Traditional electrochemical characterization via current-voltage measurements is inherently throughput-limited, as such measurements are most readily performed by serial screening.

View Article and Find Full Text PDF

Conventional polymer membranes suffer from low flux and serious fouling when used for treating emulsified oil/water mixtures. Reported herein is the fabrication of a novel superhydrophilic and underwater superoleophobic poly(acrylic acid)-grafted PVDF filtration membrane using a salt-induced phase-inversion approach. A hierarchical micro/nanoscale structure is constructed on the membrane surface and endows it with a superhydrophilic/underwater superoleophobic property.

View Article and Find Full Text PDF

High-capacity electrochemical active material-based electrodes for lithium ion batteries (LIBs), such as sulfur (S), always face the collapse of the electrode due to the big volume change during insertion of the lithium (Li) ion and therefore shorten the cycle life of the cells. Herein, a series of design from the viewpoint of both individual components and the entire cathode in lithium-sulfur (Li-S) cell was introduced aiming at addressing the issues of poor conductivity, leakage of intermediate polysulphides, and large volumetric expansion upon insertion of the Li ion. In the designed electrode, polydopamine (PD)-coated S nanosheets (NSs) were used as active materials, carboxylic acid functionalized multiwall carbon nanotube (MWCNT-COOH) as conductive additives, and poly(acrylic acid) (PAA) as binders.

View Article and Find Full Text PDF

PARP1 is an important part of DNA repair machinery. In recent years, PARP1 as novel anti-cancer therapeutic target has been broadly explored. In this study, we expressed hPARP1 enzyme in the baculovirus system and tested its activity.

View Article and Find Full Text PDF

The use of chemotherapy to treat cancer is effective, but chemoresistance reduces this efficacy. Chemotherapy resistance involves several mechanisms, including the cancer stem cell (CSC) concept. The aim of the present study was to assess whether paclitaxel-resistant epithelial ovarian carcinoma is capable of generating cells with CSC-like properties.

View Article and Find Full Text PDF

Recombinant human interleukin 24 (rhIL24) is a member of the interleukin 10 (IL10) family of cytokines with novel therapeutic properties. Human IL24 possesses three N glycosylation sites and a disulfide bridge. The cost and composition of culture media is critical for commercial-scale production of recombinant proteins in E.

View Article and Find Full Text PDF

A novel uniform amorphous carbon-coated SnO2 nanocrystal (NCs) for use in lithium-ion batteries is formed by utilizing bovine serum albumin (BSA) as both the ligand and carbon source. The SnO2 -carbon composite is then coated by a controlled thickness of polydopamine (PD) layer through in situ polymerization of dopamine. The PD-coated SnO2 -carbon composite is finally mixed with polyacrylic acid (PAA) which is used as binder to accomplish a whole anode system.

View Article and Find Full Text PDF

Among epigenetic "writers", "readers", and "erasers", the lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9me2) and nonhistone proteins, have been implicated in a variety of human diseases. A "toolkit" of well-characterized chemical probes will allow biological and disease hypotheses concerning these proteins to be tested in cell-based and animal models with high confidence. We previously discovered potent and selective G9a/GLP inhibitors including the cellular chemical probe UNC0638, which displays an excellent separation of functional potency and cell toxicity.

View Article and Find Full Text PDF

CdS/g-C3N4 core/shell nanowires with different g-C3N4 contents were fabricated by a combined solvothermal and chemisorption method and characterized by X-ray powder diffraction, scanning electronic microscopy, transmission electron microscopy, and UV-vis diffuse reflection spectroscopy. The photocatalytic hydrogen-production activities of these samples were evaluated using Na2S and Na2SO3 as sacrificial reagents in water under visible-light illumination (λ≥420 nm). The results show that after a spontaneous adsorption process g-C3N4 is successfully coated on CdS nanowires with intimate contact and can significantly improve the photocatalytic hydrogen-production rate of CdS nanowires, which reaches an optimal value of up to 4152 μmol h(-1) g(-1) at the g-C3N4 content of 2 wt %.

View Article and Find Full Text PDF

Lysine methylation is a key epigenetic mark, the dysregulation of which is linked to many diseases. Small-molecule antagonism of methyl-lysine (Kme) binding proteins that recognize such epigenetic marks can improve our understanding of these regulatory mechanisms and potentially validate Kme binding proteins as drug-discovery targets. We previously reported the discovery of 1 (UNC1215), the first potent and selective small-molecule chemical probe of a methyl-lysine reader protein, L3MBTL3, which antagonizes the mono- and dimethyl-lysine reading function of L3MBTL3.

View Article and Find Full Text PDF

A constitutive expression vector for rhIL-2-HSA fusion protein production in yeast Pichia pastoris was constructed. The coding gene was placed in frame with the Saccharomyces cerevisiae α-factor secretion signal sequence under the control of the GAP promoter. The recombinant plasmid pGAPZαA-rhIL-2-HSA was integrated into the genome of the P.

View Article and Find Full Text PDF

This study compared the effects of ten types of traditional Chinese medicines (TCMs) and six different antibiotics on E. coli O157:H7 Shiga toxin gene (stx2) mRNA expression level based on real-time PCR and the expression level of Stx toxin using an ELISA quantitative assay. We also compared their effects on the induction of the SOS response.

View Article and Find Full Text PDF

Thickness-controlled synthesis of nanosheets of nonlayered materials is of scientific significance yet greatly underdeveloped because of the lack of controllable means of inducing anisotropic growth of 2D structures. Here we report a novel 2D template-directed synthesis of ultrathin single-crystalline Au nanosheets with well-tuned thicknesses of several to tens of nanometers, large areas (>100 μm(2)), and atomically flat surfaces. The 2D template is composed of hundred-nanometer-thick water layers sandwiched by lamellar bilayer membranes of a self-assembled nonionic surfactant, dodecylglyceryl itaconate, which appears as an iridescent solution as a result of Bragg reflection of visible light from the periodic lamellar planes.

View Article and Find Full Text PDF

To date, most of the research on electrodes for energy storage has been focused on the active material itself. It is clear that investigating isolated active materials is no longer sufficient to solve all kinds of technological challenges for the development of modern battery infrastructure. From the interface chemistry point of view, a system-level strategy of designing polydopamine coated reduced graphene oxide/sulfur composite cathodes aimed at enhancing cyclic performance was reported in this work.

View Article and Find Full Text PDF

Homogeneous free-standing SWCNT/GO hybrid network films were fabricated using vacuum filtration method and their performances to be used as flexible electrodes in electrochemical capacitors were studied. Firstly, the SWCNT/GO hybrid films were treated under different temperature to investigate the influence of oxygen-containing groups on GO nanosheets on capacitive performance of them. Our results showed that the content of oxygen-containing groups had great influence on the capacitive performance of SWCNT/GO hybrid films and that the film annealed at 250 degrees C under 5% H2/Ar flow displayed an optimal capacitive performance.

View Article and Find Full Text PDF

Potassium niobate (KNbO3) microcubes with orthorhombic and tetragonal phases were hydrothermally prepared and characterized by powder X-ray diffraction, nitrogen adsorption-desorption, micro-Raman spectroscopy, Fourier transform infrared spectroscopy, diffuse reflectance UV-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The photoreactivity of the as-prepared KNbO3 samples was evaluated regarding the hydrogen evolution from aqueous methanol under UV, and the results were compared with that of cubic KNbO3 microcubes. The photocatalytic reactivity was shown to be phase-dependent, following the order cubic > orthorhombic > tetragonal.

View Article and Find Full Text PDF

Microfabricated devices designed to provide phase contrast in the transmission electron microscope must be free of phase distortions caused by unexpected electrostatic effects. We find that such phase distortions occur even when a device is heated to 300 °C during use in order to avoid the formation of polymerized, carbonaceous contamination. Remaining factors that could cause unwanted phase distortions include patchy variations in the work function of a clean metal surface, radiation-induced formation of a localized oxide layer, and creation of a contact potential between an irradiated area and the surround due to radiation-induced structural changes.

View Article and Find Full Text PDF

The aim of this in-vitro study was to evaluate the efficacy of tooth whitening using different calcium phosphate-based formulations. Teeth were treated with three different hydroxyapatite preparations at different concentrations and with two control preparations; each tooth was treated a total of three times. After application of the last material, hydrodynamic shear force was applied to mimic mechanical loading.

View Article and Find Full Text PDF

Background: Multidrug resistance (MDR) is one of the major problems in the treatment of cancer. Overcoming it is therefore expected to improve clinical outcomes for cancer patients. MDR is usually characterized by overexpression of ABC (ATP-binding cassette) protein transporters such as P-gp, MRP1, and ABCG2.

View Article and Find Full Text PDF

Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn.

View Article and Find Full Text PDF

Epithelial ovarian cancer is a major cause of mortality among women with gynecological malignancies. Paclitaxel is commonly used for chemotherapy of ovarian cancer, yet its efficacy is limited by chemoresistance. Generally, drug resistance is associated with acquisition of the epithelial-mesenchymal transition (EMT) in cancer.

View Article and Find Full Text PDF

A novel all-inorganic Cu(OH)2 nanowire-haired membrane with superhydrophilicity and underwater ultralow adhesive superoleophobicity is fabricated by a facile surface oxidation of copper mesh that allows effective separation of both immiscible oil/water mixtures and oil-in-water emulsions solely driven by gravity, with extremely high separation efficiency. The all-inorganic membrane exhibits superior solvent and alkaline resistance and antifouling property compared to organic-based membranes.

View Article and Find Full Text PDF

A continuing problem in the area of oligonucleotide-based therapeutics is the poor access of these molecules to their sites of action in the nucleus or cytosol. A number of approaches to this problem have emerged. One of the most interesting is the use of ligand-oligonucleotide conjugates to promote receptor mediated cell uptake and delivery.

View Article and Find Full Text PDF