Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutrient-induced TORC1 activation remain poorly understood.
View Article and Find Full Text PDFPhthalates are ubiquitously used as plasticizers in various consumer care products. Diethyl phthalate (DEP), one of the main phthalates, elicits developmental and reproductive toxicities but the underlying mechanisms are not fully understood. Chemogenomic profiling of DEP in S.
View Article and Find Full Text PDFBackground: Target of Rapamycin Complex 1 (TORC1) is a highly conserved eukaryotic protein complex that couples the presence of growth factors and nutrients in the environment with cellular proliferation. TORC1 is primarily implicated in linking amino acid levels with cellular growth in yeast and mammals. Although glucose deprivation has been shown to cause TORC1 inactivation in yeast, the precise role of TORC1 in glucose signaling and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFVemurafenib is a BRAF kinase inhibitor (BRAFi) that is used to treat melanoma patients harboring the constitutively active BRAF-V600E mutation. However, after a few months of treatment patients often develop resistance to vemurafenib leading to disease progression. Sequence analysis of drug-resistant tumor cells and functional genomic screens has identified several genes that regulate vemurafenib resistance.
View Article and Find Full Text PDFPeptide-based molecules hold great potential as targeted inhibitors of intracellular protein-protein interactions (PPIs). Indeed, the vast diversity of chemical space conferred through their primary, secondary and tertiary structures allows these molecules to be applied to targets that are typically deemed intractable small molecules. However, the development of peptide therapeutics has been hindered by their limited conformational stability, proteolytic sensitivity and cell permeability.
View Article and Find Full Text PDFIn this study, we report antifungal activity of auroramycin against Candida albicans, Candida tropicalis, and Cryptococcus neoformans. Auroramycin, a potent antimicrobial doubly glycosylated 24-membered polyene macrolactam, was previously isolated and characterized, following CRISPR-Cas9 mediated activation of a silent polyketide synthase biosynthetic gene cluster in Streptomyces rosesporous NRRL 15998. Chemogenomic profiling of auroramycin in yeast has linked its antifungal bioactivity to vacuolar transport and membrane organization.
View Article and Find Full Text PDFIntegration of chemical-genetic interaction data with biological functions provides a mechanistic understanding of how toxic compounds affect cells. Mono-(2-ethylhexyl)-phthalate (MEHP) is an active metabolite of di-(2-ethylhexyl)-phthalate (DEHP), a commonly used plasticizer. MEHP adversely affects human health causing hepatotoxicity and reproductive toxicity.
View Article and Find Full Text PDFWe have isolated Hypoculoside, a new glycosidic amino alcohol lipid from the fungus Acremonium sp. F2434 belonging to the order Hypocreales and determined its structure by 2D-NMR (Nuclear Magnetic Resonance) spectroscopy. Hypoculoside has antifungal, antibacterial and cytotoxic activities.
View Article and Find Full Text PDFBackground: Protein-protein interactions (PPIs) are fundamental to the growth and survival of cells and serve as excellent targets to develop inhibitors of biological processes such as host-pathogen interactions and cancer cell proliferation. However, isolation of PPI inhibitors is extremely challenging. While several in vitro assays to screen for PPI inhibitors are available, they are often expensive, cumbersome, and require large amounts of purified protein.
View Article and Find Full Text PDFBackground: RNA is often targeted to be localized to the specific subcellular compartments. Specific localization of mRNA is believed to be an important mechanism for targeting their protein products to the locations, where their function is required.
Results: In this study we performed the genome wide transcriptome analysis of peroxisome preparations from the mouse liver using microarrays.
PP2A(Cdc55) is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2A(Cdc55) activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway.
View Article and Find Full Text PDF