Background: Epigenetic modifications play important roles in diverse cellular processes such as X chromosome inactivation, cell differentiation, development and senescence. DNA methylation and histone modifications are major epigenetic modifications that regulate chromatin structure and gene expression without DNA sequence changes. Epigenetic alterations may induce phenotypic changes stable enough for mitotic or meiotic inheritance.
View Article and Find Full Text PDFBackground: Hybridization and polyploidization events are important driving forces in plant evolution. Allopolyploids formed between different species can be naturally or artificially created but often suffer from genetic instability and infertility in successive generations. xBrassicoraphanus is an intergeneric allopolyploid obtained from a cross between Brassica rapa and Raphanus sativus, providing a useful resource for genetic and genomic study in hybrid species.
View Article and Find Full Text PDFIn higher eukaryotes DNA methylation is a prominent epigenetic mark important for chromatin structure and gene expression. Thus, profiling DNA methylation is important for predicting gene expressions associated with specific traits or diseases. DNA methylation is achieved by DNA methyltransferases and can be actively removed by specific enzymes in a replication-independent manner.
View Article and Find Full Text PDFPlant somatic cells can be reprogrammed into pluripotent cell mass, called callus, through a two-step tissue culture method. Incubation on callus-inducing medium triggers active cell proliferation to form a pluripotent callus. Notably, DNA methylation is implicated during callus formation, but a detailed molecular process regulated by DNA methylation remains to be fully elucidated.
View Article and Find Full Text PDFHybridization and polyploidization are major driving forces in plant evolution. Allopolyploids can be occasionally formed from a cross between distantly related species but often suffer from chromosome instability and infertility. x is an intergeneric allotetraploid (AARR; 2n = 38) derived from a cross between (AA; 2n = 20) and (RR; 2n = 18).
View Article and Find Full Text PDFBackground: Heterosis is biologically important but the molecular basis of the phenomenon is poorly understood. We characterized intergeneric hybrids between B. rapa cv.
View Article and Find Full Text PDFMaize is the second-most produced crop in the Korean peninsula and has been continuously cultivated since the middle of the 16th century, when it was originally introduced from China. Even with this extensive cultivation history, the diversity and properties of Korean landraces have not been investigated at the nucleotide sequence level. We collected 12 landraces with various flowering times and performed RNA-seq in the early vegetative stage.
View Article and Find Full Text PDFThere is little known about the function of rice hexokinases (HXKs) in planta. We characterized hxk5-1, a Tos17 mutant of OsHXK5 that is up-regulated in maturing pollen, a stage when starch accumulates. Progeny analysis of self-pollinated heterozygotes of hxk5-1 and reciprocal crosses between the wild-type and heterozygotes revealed that loss of HXK5 causes male sterility.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
The DEMETER (DME) DNA glycosylase demethylates the maternal genome in the central cell prior to fertilization and is essential for seed viability. DME preferentially targets small transposons that flank coding genes, influencing their expression and initiating plant gene imprinting. DME also targets intergenic and heterochromatic regions, but how it is recruited to these differing chromatin landscapes is unknown.
View Article and Find Full Text PDFHighbush blueberry (Vaccinium corymbosum) fruit accumulate high levels of anthocyanins during ripening, which might be controlled by abscisic acid (ABA), a signal molecule in non-climacteric fruits. For an integrated view of the ripening process from ABA to anthocyanin biosynthesis, we analyzed the transcriptomes of 'Bluecrop' highbush blueberry fruit using RNA-Seq at three ripening stages, categorized based on fruit skin coloration: pale green at ca. 30 days after full bloom (DAFB), reddish purple at ca.
View Article and Find Full Text PDFDNA methylation plays an important role in diverse developmental processes in many eukaryotes, including the response to environmental stress. Abscisic acid (ABA) is a plant hormone that is up-regulated under stress. The involvement of DNA methylation in the ABA response has been reported but is poorly understood.
View Article and Find Full Text PDFRoot skin color is one of the economically important traits in radish (Raphanus sativus), and the pigmentation in red skin varieties is largely attributable to anthocyanin accumulation. Pelargonidin was found as a major anthocyanin pigment accumulated in the sub-epidermal layer of red radish roots. In the 20 F2 population generated from the F1 with red root skins, root skins with red and white colors segregated in a 3:1 ratio.
View Article and Find Full Text PDFMutation in , an ortholog of the cell wall integrity mitogen-activated protein kinase kinase kinase (MAPKKK) of , in the chestnut blight fungus resulted in a sporadic sectorization as culture proceeded. The progeny from the sectored area maintained the characteristics of the sector, showing a massive morphogenetic change, including robust mycelial growth without differentiation. Epigenetic changes were investigated as the genetic mechanism underlying this sectorization.
View Article and Find Full Text PDFBackground: Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants.
Results: We report two high-quality de novo genomes (Capsicum baccatum and C.
DNA methylation is a prominent epigenetic modification in plants and animals regulated by similar mechanisms but the process of DNA demethylation is profoundly different. Unlike vertebrates that require a series of enzymatic conversions of 5-methylcytosine (5mC) into other bases for DNA demethylation, plants utilize the DEMETER (DME) family of 5mC DNA glycosylases to catalyze a direct removal of 5mC from DNA. Here we introduced Arabidopsis DME into human HEK-293T cells to allow direct 5mC excision, and observed that direct DNA demethylation activity was successfully implemented by DME expression.
View Article and Find Full Text PDFRadish (Raphanus sativus L.), a root vegetable, is rich in glucosinolates (GLs), which are beneficial secondary metabolites for human health. To investigate the genetic variations in GL content in radish roots and the relationship with other root phenotypes, we analyzed 71 accessions from 23 different countries for GLs using HPLC.
View Article and Find Full Text PDFZoysiagrass (Zoysia japonica Steud.) is commonly found in temperate climate regions and widely used for lawns, in part, owing to its uniform green color. However, some zoysiagrass cultivars accumulate red to purple pigments in their spike and stolon tissues, thereby decreasing the aesthetic value.
View Article and Find Full Text PDFDNA methylation is a primary epigenetic modification regulating gene expression and chromatin structure in many eukaryotes. Plants have a unique DNA demethylation system in that 5-methylcytosine (5mC) is directly removed by DNA demethylases, such as DME/ROS1 family proteins, but little is known about the downstream events. During 5mC excision, DME produces 3'-phosphor-α, β-unsaturated aldehyde and 3'-phosphate by successive β- and δ-eliminations, respectively.
View Article and Find Full Text PDFMethylation of cytosine to 5-methylcytosine (5mC) is important for gene expression, gene imprinting, X-chromosome inactivation, and transposon silencing. Active demethylation in animals is believed to proceed by DNA glycosylase removal of deaminated or oxidized 5mC. In plants, 5mC is removed from the genome directly by the DEMETER (DME) family of DNA glycosylases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2014
In plants and animals, 5-methylcytosine (5mC) serves as an epigenetic mark to repress gene expression, playing critical roles for cellular differentiation and transposon silencing. Mammals also have 5-hydroxymethylcytosine (5hmC), resulting from hydroxylation of 5mC by TET family-enzymes. 5hmC is abundant in mouse Purkinje neurons and embryonic stem cells, and regarded as an important intermediate for active DNA demethylation in mammals.
View Article and Find Full Text PDFPeppers (Capsicum spp.) display a variety of fruit colors that are reflected by the composition and amount of diverse carotenoid pigments accumulated in the pericarp. Three independent loci, c1, c2, and y, are known to determine the mature color of pepper fruits by their allelic combinations.
View Article and Find Full Text PDF