Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology has significantly facilitated the generation of gene-edited (GE) pigs. Although GE pigs are promising for agricultural and biomedical applications, the entire process of generating useful GE pigs is time- and labor-intensive. To overcome this, gene-editing techniques have been developed, where Cas9 nuclease and single guide RNA (sgRNA) are directly injected into animals; however, their efficiency remains low owing to the large size of the nuclease.
View Article and Find Full Text PDFBlood analysis plays a pivotal role in assessing the health of laboratory animals, including pigs. This study investigated the hematological profiles of transgenic pigs of the MGH breed for xenotransplantation, focusing on the effect of housing conditions on blood parameters. A cohort of pigs was longitudinally monitored from 6 to 18 months of age in both conventional and specific pathogen-free (SPF) environments.
View Article and Find Full Text PDFThe vascular endothelium of xenografted pig organs represents the initial site of rejection after exposure to recipient immune cells. In this study, we aimed to develop a promoter specific to porcine vascular endothelial cells as a step toward overcoming xenograft rejection. Transcriptome analysis was performed on porcine aortic endothelial cells (PAECs), ear skin fibroblasts isolated from knockout (GTKO) pigs, and the porcine renal epithelial cell line pk-15.
View Article and Find Full Text PDFCardiac xenotransplantation is the potential treatment for end-stage heart failure, but the allogenic organ supply needs to catch up to clinical demand. Therefore, genetically-modified porcine heart xenotransplantation could be a potential alternative. So far, pig-to-monkey heart xenografts have been studied using multi-transgenic pigs, indicating various survival periods.
View Article and Find Full Text PDFIn this study, we built on our previous research that discovered that autophagy activated the metaphase I stage during porcine oocytes maturation. We investigated the relationship between autophagy and oocyte maturation. First, we confirmed whether autophagy was activated differently by different media (TCM199 and NCSU-23) during maturation.
View Article and Find Full Text PDFAbnormalities in animals cloned via somatic cell nuclear transfer (SCNT) have been reported. In this study, to produce bomb-sniffing dogs, we successfully cloned four healthy dogs through SCNT using the same donor genome from the skin of a male German shepherd old dog. Veterinary diagnosis (X-ray/3D-CT imaging) revealed that two cloned dogs showed normal phenotypes, whereas the others showed abnormal shortening of the mandible (brachygnathia inferior) at 1 month after birth, even though they were cloned under the same conditions except for the oocyte source.
View Article and Find Full Text PDFBackground: Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable.
Objectives: To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient .
Methods: Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization.
Genetically engineered (GE) pigs with various combinations of genetic profiles have been developed using heterologous promoters. This study aimed to identify autologous promoters for high and ubiquitous expression of xenotransplantation relevant genes in GE pigs. A 1.
View Article and Find Full Text PDFHistone methylation, histone acetylation, and DNA methylation are the important factors for somatic cell nuclear transfer (SCNT). Histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have been used to improve cloning efficiency. In particular, scriptaid, an HDACi, has been shown to improve SCNT efficiency.
View Article and Find Full Text PDFPretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts.
View Article and Find Full Text PDFThe objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.
View Article and Find Full Text PDFLXXLL/leucine zipper-containing alternative reading frame (ARF)-binding protein (LZAP) was recently shown to function as a tumor suppressor through inhibition of the NF-kappaB signaling pathway. LZAP is also known as a negative regulator of cell invasion, and its expression was demonstrated to be reduced in several tumor tissues. However, the molecular mechanism of the negative effect of LZAP on cell invasion is unclear.
View Article and Find Full Text PDF