Coronaviruses, including SARS-CoV-2, SARS-CoV, MERS-CoV and influenza A virus, require the host proteases to mediate viral entry into cells. Rather than targeting the continuously mutating viral proteins, targeting the conserved host-based entry mechanism could offer advantages. Nafamostat and camostat were discovered as covalent inhibitors of TMPRSS2 protease involved in viral entry.
View Article and Find Full Text PDFInterferon regulatory factors (IRFs) are key elements of antiviral innate responses that regulate the transcription of interferons (IFNs) and IFN-stimulated genes (ISGs). While the sensitivity of human coronaviruses to IFNs has been characterized, antiviral roles of IRFs during human coronavirus infection are not fully understood. Type I or II IFN treatment protected MRC5 cells from human coronavirus 229E infection, but not OC43.
View Article and Find Full Text PDFN-(4-hydroxyphenyl)-retinamide (4-HPR) inhibits the dihydroceramide Δ4-desaturase 1 (DEGS1) enzymatic activity. We previously reported that 4-HPR suppresses the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) spike protein-mediated membrane fusion through a decrease in membrane fluidity in a DEGS1-independent manner. However, the precise mechanism underlying the inhibition of viral entry by 4-HPR remains unclear.
View Article and Find Full Text PDFAlthough the importance of virus-specific cytotoxic T lymphocytes (CTL) in virus clearance is evident in COVID-19, the characteristics of virus-specific CTLs related to disease severity have not been fully explored. Here we show that the phenotype of virus-specific CTLs against immunoprevalent epitopes in COVID-19 convalescents might differ according to the course of the disease. We establish a cellular screening method that uses artificial antigen presenting cells, expressing HLA-A24:02, the costimulatory molecule 4-1BBL, SARS-CoV-2 structural proteins S, M, and N and non-structural proteins ORF3a and nsp6/ORF1a.
View Article and Find Full Text PDFVarious chimeric receptors have been developed and used for biological experiments. In the present study, we constructed three types of chimeric receptor activator of nuclear factor-kappa B (RANK) with the glutathione S-transferase (GST) protein in the extracellular domain, and stimulated them using newly synthesized chemical trimerizers with three glutathiones. Although this stimulation did not activate these proteins, we unexpectedly found that the chimera named RANK-GST-SC, in which GST replaced a major part of the RANK extracellular domain, activated nuclear factor-kappa B (NF-κB) signaling approximately sixfold more strongly than wild-type RANK without the ligand.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV), capable of zoonotic transmission, has been associated with emerging viral pneumonia in humans. In this study, a set of highly potent peptides were designed to prevent MERS-CoV fusion through competition with heptad repeat domain 2 (HR2) at its HR1 binding site. We designed eleven peptides with stronger estimated HR1 binding affinities than the wild-type peptide to prevent viral fusion with the cell membrane.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2021
Latency remains a barrier to achieving a sterilizing cure to HIV infection. It is thus important to find new host factor(s) to better understand maintenance of HIV latency and be exploited to develop new and more efficient latency reversing agents (LRAs). Here we employed RNA interference screening with a latently HIV-1-infected cell-line to identify Stathmin 1 (STMN1) as a host factor required for maintaining HIV-1 latency.
View Article and Find Full Text PDFThe membrane fusion between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host cells is essential for the initial step of infection; therefore, the host cell membrane components, including sphingolipids, influence the viral infection. We assessed several inhibitors of the enzymes pertaining to sphingolipid metabolism, against SARS-CoV-2 spike protein (S)-mediated cell-cell fusion and viral infection. -(4-Hydroxyphenyl) retinamide (4-HPR), an inhibitor of dihydroceramide Δ4-desaturase 1 (DES1), suppressed cell-cell fusion and viral infection.
View Article and Find Full Text PDFNF-κB was first identified in 1986 as a B cell-specific transcription factor inducing immunoglobulin κ light chain expression. Subsequent studies revealed that NF-κB plays important roles in development, organogenesis, immunity, inflammation, and neurological functions by spatiotemporally regulating cell proliferation, differentiation, and apoptosis in several cell types. Furthermore, studies on the signal pathways that activate NF-κB led to the discovery of TRAF family proteins with E3 ubiquitin ligase activity, which function downstream of the receptor.
View Article and Find Full Text PDFA novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides.
View Article and Find Full Text PDFAlthough infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active.
View Article and Find Full Text PDFTRAF-interacting protein with a forkhead-associated (FHA) domain (TIFA), originally identified as an adaptor protein of TRAF6, has recently been shown to be involved in innate immunity, induced by a pathogen-associated molecular pattern (PAMP). ADP-β-D-manno-heptose, a newly identified PAMP, binds to alpha-kinase 1 (ALPK1) and activates its kinase activity to phosphorylate TIFA. Phosphorylation triggers TIFA oligomerisation and formation of a subsequent TIFA-TRAF6 oligomeric complex for ubiquitination of TRAF6, eventually leading to NF-κB activation.
View Article and Find Full Text PDFHIV-1 latent reservoirs harbouring silenced but replication-competent proviruses are a major obstacle against viral eradication in infected patients. The "shock and kill" strategy aims to reactivate latent provirus with latency reversing agents (LRAs) in the presence of antiretroviral drugs, necessitating the development of effective and efficient LRAs. We screened a chemical library for potential LRAs and identified two dual Polo-like kinase (PLK)/bromodomain inhibitors, BI-2536 and BI-6727 (volasertib), which are currently undergoing clinical trials against various cancers.
View Article and Find Full Text PDF() has been previously implicated as an essential molecular brake, preventing immune overreaction and malignant transformation by attenuating NF-κB signaling, putatively via repression of the and genes. The exact contribution of -mediated silencing of these genes to the control of immune activation is currently unknown. Therefore, we defined the role of the - signaling axis in the regulation of immune homeostasis using a genetic epistasis analysis in mice.
View Article and Find Full Text PDFAutophagy, the processes of delivery of intracellular components to lysosomes, regulates induction of inflammation. Inducible macroautophagy degrades inflammasomes and dysfunctional mitochondria to downregulate inflammatory signals. Nonetheless, the effects of constitutive basal autophagy on inflammatory signals are largely unknown.
View Article and Find Full Text PDFThe Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains.
View Article and Find Full Text PDFTRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia.
View Article and Find Full Text PDFAnti-cytokine therapeutic antibodies have been demonstrated to be effective in the treatment of several auto-immune disorders. However, The problems in antibody manufacture and the immunogenicity caused by multiple doses of antibodies inspire people to use auto-cytokine as immunogen to induce anti-cytokine antibodies. Nevertheless, the tolerance for inducing immune response against self-antigen has hindered the wide application of the strategy.
View Article and Find Full Text PDFRelB is activated by the non-canonical NF-κB pathway, which is crucial for immunity by establishing lymphoid organogenesis and B-cell and dendritic cell (DC) maturation. To elucidate the mechanism of the RelB-mediated immune cell maturation, a precise understanding of the relationship between cell maturation and RelB expression and activation at the single-cell level is required. Therefore, we generated knock-in mice expressing a fusion protein between RelB and fluorescent protein (RelB-Venus) from the Relb locus.
View Article and Find Full Text PDFRetrovirology
February 2015
Background: HIV-1 infected patients frequently have osteolytic bone disease, which is caused by the dysregulation of the bone remodeling system that involves the interaction between osteoblasts and osteoclasts, but the relationship between osteolytic disease and HIV-1 infection remains unclear. In this study we tested whether HIV-1 infection of osteoclasts affects their differentiation.
Results: We prepared human osteoclasts from CD14+ monocytes and examined them for their susceptibility to HIV-1.
Receptor activator of nuclear factor κB (RANK) is a member of the tumor necrosis factor receptor superfamily (TNFRSF) and triggers osteoclastogenesis by inducing the expression of NFATc1 through the activation of the NF-κB and MAPK pathways. Cellular inhibitors of apoptosis proteins 1 and 2 (cIAP1/2), which are ubiquitin E3 ligases, are involved in the activation of the NF-κB and MAPK pathways by various members of the TNFRSF. However, the involvement of cIAP1/2 in RANK signaling has remained largely unknown.
View Article and Find Full Text PDFThe persistent or excess activation of NF-κB causes various inflammatory and autoimmune diseases, but the molecular mechanisms that negatively regulate NF-κB activation are not fully understood. Here we show that p47, an essential factor for Golgi membrane fusion, associates with the NEMO subunit of the IκB kinase (IKK) complex upon TNF-α or IL-1 stimulation, and inhibits IKK activation. p47 binds to Lys63-linked and linear polyubiquitin chains, which are conjugated to NEMO upon such stimulation.
View Article and Find Full Text PDFPathological bone resorption by osteoclasts is primarily treated with bisphosphonates. Because the administration of bisphosphonates is associated with a risk for multiple adverse symptoms, a precise understanding of the mechanisms underlying osteoclastogenesis is required to develop drugs with minimal side-effects. Osteoclastogenesis depends on receptor activator of nuclear factor kappa B (RANK) signaling mediated by TRAF6.
View Article and Find Full Text PDF