Publications by authors named "Jin Fang Lu"

Reported herein is a convenient and efficient method for one-pot, catalytic reductive amination, as well as the first multi-component tandem reductive amination-functionalization of bench-stable and readily available common carboxylic esters. This method is based on the cationic [Ir(COD)]BArF-catalyzed chemoselective hydrosilylation of esters, followed by one-pot acid-mediated amination and nucleophilic addition. The reaction was conducted under mild conditions at a very low catalyst loading (0.

View Article and Find Full Text PDF

The intracellular EscE protein tightly controls the secretion of the type III secretion system (T3SS) middle and late substrates in Edwardsiella piscicida. However, the regulation of secretion by EscE is incompletely understood. In this work, we reveal that EscE interacts with EsaH and EsaG.

View Article and Find Full Text PDF

Edwardsiella tarda is an important Gram-negative pathogen that employs a type III secretion system (T3SS) to deliver effectors into host cells to facilitate bacterial survival and replication. These effectors are translocated into host cells through a translocon complex composed of three secreted proteins, namely, EseB, EseC, and EseD. The secretion of EseB and EseD requires a chaperone protein called EscC, whereas the secretion of EseC requires the chaperone EscA.

View Article and Find Full Text PDF

The type III secretion system (T3SS) of Edwardsiella tarda is crucial for its intracellular survival and pathogenesis in fish. The orf13 gene (escE) of E. tarda is located 84 nucleotides (nt) upstream of esrC in the T3SS gene cluster.

View Article and Find Full Text PDF

The type III secretion system (T3SS) of Edwardsiella tarda plays an important role in infection by translocating effector proteins into host cells. EseB, a component required for effector translocation, is reported to mediate autoaggregation of E. tarda.

View Article and Find Full Text PDF

Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and gastro- and extraintestinal infections in humans. The type III secretion system (T3SS) of E. tarda has been identified as a key virulence factor that contributes to pathogenesis in fish.

View Article and Find Full Text PDF

Many Gram-negative bacteria utilize a type III secretion system (T3SS) to translocate virulence proteins into host cells to cause diseases. In responding to infection, macrophages detect some of the translocated proteins to activate caspase-1-mediated cell death, called pyroptosis, and secretion of proinflammatory cytokines to control the infection. Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and both gastrointestinal and extraintestinal infections in humans.

View Article and Find Full Text PDF

Native plasmids pEI1 and pEI2 were detected in Edwardsiella ictaluri HSN-1 isolated from diseased yellow catfish (Pelteobagrus fulvidraco). EseH encoded by pEI1 and other two proteins, EseI and EscD, encoded by pEI2, were found with homology to type III secretion system (T3SS) proteins. To investigate their roles in pathogenesis, the native plasmids were cured based on plasmid incompatibility by introducing a Kan positive and SacB negative selection marker into gene spacer of the native plasmids.

View Article and Find Full Text PDF

Background And Purpose: The objective of this study is to investigate the relationship between excitatory substances by testing the urine in children with Tourette syndrome (TS).

Methods: We performed a control study involving 44 patients with TS and 44 normal children by investigating the children's daily eating habits. We used the gas chromatograph-mass spectrometer and liquid chromatograph-mass spectrometer from Agilent.

View Article and Find Full Text PDF

Objective: To study the effects of Huangqi decoction (HQD) on phagocytic activity of peritoneal macrophage of mice.

Method: One hundred Kunming mice, whose weight varied from 18 g to 22 g, were selected and divided into 10 groups randomly in eluding contrast group, groups conducted at different doses of HQD by ig, groups conducted in various ways of taking medicine, and groups conducted with comparative treat combining Huangqi and Dexamethasone. Mice in every group were taken medicine one time daily for 6 days.

View Article and Find Full Text PDF

Aim: To prepare bioadhesive microspheres of metronidazole (Metro) with prolonging resident time in the stomach and sustaining drug release.

Methods: The microspheres were prepared by a drying-in-liquid method. The appearance, particle size and drug release in vitro were examined.

View Article and Find Full Text PDF