Publications by authors named "Jin Aun Ng"

Background: Kilovoltage Intrafraction Monitoring (KIM) is a method which determines the three-dimensional position of the prostate from two-dimensional kilovoltage (kV) projections taken during linac based radiotherapy treatment with real-time feedback. Rectal displacement devices (RDDs) allow for improved rectal dosimetry during prostate cancer treatment. This study used KIM to perform a preliminary investigation of prostate intrafraction motion observed in patients with an RDD in place.

View Article and Find Full Text PDF

Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management.

View Article and Find Full Text PDF

Purpose: Kilovoltage intrafraction monitoring (KIM) is a new real-time 3-dimensional image guidance method. Unlike previous real-time image guidance methods, KIM uses a standard linear accelerator without any additional equipment needed. The first prospective clinical trial of KIM is underway for prostate cancer radiation therapy.

View Article and Find Full Text PDF

Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager.

View Article and Find Full Text PDF

Purpose: Tumor positional uncertainty has been identified as a major issue that deteriorates the efficacy of radiation therapy. Tumor rotational movement, which is not well understood, can result in significant geometric and dosimetric inaccuracies. The objective of this study was to measure 6 degrees-of-freedom (6 DoF) prostate and lung tumor motion, focusing on the more novel rotation, using kilovoltage intrafraction monitoring (KIM).

View Article and Find Full Text PDF

Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre.

Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed.

View Article and Find Full Text PDF

Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT).

View Article and Find Full Text PDF

The dose for image-based motion monitoring of prostate tumours during radiotherapy delivery has not been established. This study aimed to provide quantitative analysis and optimization of the fluoroscopic patient imaging dose during radiotherapy for IMRT and VMAT treatments using standard and hypofractionated treatment schedules. Twenty-two patients with type T1c N0/M0 prostate cancer and three implanted fiducial markers were considered.

View Article and Find Full Text PDF

When modelling biological ion channels using Brownian dynamics (BD) or Poisson-Nernst-Planck theory, the force encountered by permeant ions is calculated by solving Poisson's equation. Two free parameters needed to solve this equation are the dielectric constant of water in the pore and the dielectric constant of the protein forming the channel. Although these values can in theory be deduced by various methods, they do not give a reliable answer when applied to channel-like geometries that contain charged particles.

View Article and Find Full Text PDF