Publications by authors named "Jimmy Tsang"

Objective: To evaluate belimumab addition to the standard of care in patents with refractory idiopathic inflammatory myopathy (IIM).

Methods: We conducted a 40-week multicentre, randomized, double-blind, placebo-controlled trial with 1:1 IV belimumab 10 mg/kg or placebo randomization and a 24-week open-label extension. Clinical responses were measured by the definition of improvement (DOI) and total improvement score (TIS).

View Article and Find Full Text PDF

The Plasma Membrane Proteolipid 3 (PMP3, UPF0057 family in Uniprot) family consists of abundant small hydrophobic polypeptides with two predicted transmembrane helices. Plant homologues were upregulated in response to drought/salt-stresses and yeast deletion mutants exhibited conditional growth defects. We report here abundant expression of Group I PMP3 homologues (PMP3(i)hs) during normal vegetative growth in both prokaryotic and eukaryotic cells, at a level comparable to housekeeping genes, implicating the regular cellular functions.

View Article and Find Full Text PDF

Haloacids are considered to be environmental pollutants, but some of them have also been tested in clinical research. The way that haloacids are transported across biological membranes is important for both biodegradation and drug delivery purposes. In this review, we will first summarize putative haloacids transporters and the information about haloacids transport when studying carboxylates transporters.

View Article and Find Full Text PDF

Biodegradation is an effective way to remove environmental pollutants haloacids, and haloacids uptake is an important step besides cytoplasmic dehalogenation. Previous study has identified a robust haloacids transport system in Burkholderia caribensis MBA4 with two homologous genes deh4p and dehp2 as major players. Both genes are inducible by monochloroacetate (MCA), and dehp2 is conserved among the Burkholderia genus with a two component system upstream.

View Article and Find Full Text PDF

We report the complete genome sequence of Burkholderia caribensis MWAP64 (LMG 18531), which was isolated from soil for its proficiency in producing large amounts of exopolysaccharide that help form microaggregates in a vertisol. There are four replicons with a total size of 9,032,119 bp.

View Article and Find Full Text PDF

Burkholderia caribensis MBA4 was isolated from soil for its capability to grow on haloacids. This bacterium has a genome size of 9,482,704 bp. Here we report the genome sequences and annotation, together with characteristics of the genome.

View Article and Find Full Text PDF

Burkholderia caribensis MBA4 was isolated from soil for its ability to utilize 2-haloacid. An inducible haloacid operon, encoding a dehalogenase and a permease, is mainly responsible for the biotransformation. Here, we report the draft genome sequence of this strain.

View Article and Find Full Text PDF

Haloacids are environmental pollutant and can be transformed to non-toxic alkanoic acids by microbial dehalogenase. Bacterium Burkholderia species MBA4 was enriched from soil for its ability to bioremediate haloacids such as mono-chloroacetate (MCA), mono-bromoacetate (MBA), 2-mono-chloropropionate, and 2-mono-bromopropionate. MBA4 produces an inducible dehalogenase Deh4a that catalyzes the dehalogenation process.

View Article and Find Full Text PDF

Background: Acetate is a commonly used substrate for biosynthesis while monochloroacetate is a structurally similar compound but toxic and inhibits cell metabolism by blocking the citric acid cycle. In Burkholderia species MBA4 haloacetate was utilized as a carbon and energy source for growth. The degradation of haloacid was mediated by the production of an inducible dehalogenase.

View Article and Find Full Text PDF

Bacterium Burkholderia sp. MBA4 can utilize haloacids as the sole carbon and energy source for growth. We have previously reported that a haloacid operon, encoding for a dehalogenase (Deh4a) and an associated permease (Deh4p), was responsible for the transformation and uptake of haloacids in MBA4.

View Article and Find Full Text PDF

Background: 2-Haloacids can be found in the natural environment as degradative products of natural and synthetic halogenated compounds. They can also be generated by disinfection of water and have been shown to be mutagenic and to inhibit glyceraldehyde-3-phosphate dehydrogenase activity. We have recently identified a novel haloacid permease Deh4p from a bromoacetate-degrading bacterium Burkholderia sp.

View Article and Find Full Text PDF

Purple acid phosphatases (PAP) are a group of dimetallic phosphohydrolase first identified in eukaryotes. Bioinformatics analysis revealed 57 prokaryotic PAP-like sequences in the genomes of 43 bacteria and 4 cyanobacteria species. A putative PAP gene (BcPAP) from the bacteria Burkholderia cenocepacia J2315 was chosen for further studies.

View Article and Find Full Text PDF

Background: S-Adenosylmethionine synthetase (AdoMetS) catalyzes the formation of S-Adenosylmethionine (AdoMet), the major methyl group donor in cells. AdoMet-mediated methylation of DNA is known to have regulatory effects on DNA transcription and chromosome structure. Transcription of environmental-responsive genes was demonstrated to be mediated via DNA methylation in dinoflagellates.

View Article and Find Full Text PDF

Burkholderia cepacia MBA4 is a bacterium that can utilize 2-haloacids as carbon and energy sources for growth. It has been proposed that dehalogenase-associated permease mediates the uptake of haloacid. In this paper, we report the first cloning and characterization of such a haloacid permease.

View Article and Find Full Text PDF

Burkholderia cepacia MBA4 is a bacterium that degrades 2-haloacids by removing the halogen and subsequent metabolism of the product for energy. In this study, 2-DE, MS/MS, and N-terminal amino acid sequencing were used to investigate the protein expression profiles of MBA4 grown in a 2-haloacid (monochloroacetate, MCA) and in the corresponding metabolic product (glycolate). Glycolate was used as a control to eliminate the proteins induced by it.

View Article and Find Full Text PDF

Prokaryotic histone-like proteins (Hlps) are abundant proteins found in bacterial and plastid nucleoids. Hlps are also found in the eukaryotic dinoflagellates and the apicomplexans, two major lineages of the Alveolata. It may be expected that Hlps of both groups were derived from the same ancestral Alveolates.

View Article and Find Full Text PDF

Expression of heterologous protein in Escherichia coli usually based on the IPTG-inducible expression systems. The use of these systems for membrane protein production, however, usually caused cytotoxic problem that affected the yield and functional characterization of the protein. Optimization of these systems for transporter protein production is time-consuming and is usually ineffective.

View Article and Find Full Text PDF

DehIVa is one of two dehalogenases produced by the soil- and water-borne bacterium Burkholderia cepacia MBA4. It acts to break down short-chain halogenated aliphatic acids through a nucleophilic attack and subsequent hydrolysis of an enzyme-substrate intermediate to remove the halide ions from L-enantiomers substituted at the C2 position (e.g L-2-monochloropropionic acid).

View Article and Find Full Text PDF

2-Haloacid dehalogenases are hydrolytic enzymes that cleave the halogen-carbon bond(s) in haloalkanoic acids. We have previously isolated a cryptic haloacid dehalogenase gene from Burkholderia cepacia MBA4 and expressed it in Escherichia coli. This recombinant protein is unusual in having a long leader sequence, a property of periplasmic enzymes.

View Article and Find Full Text PDF