Publications by authors named "Jimmy Ouellet"

Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ riboswitches.

View Article and Find Full Text PDF

Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ riboswitches.

View Article and Find Full Text PDF

Helicases form a universal family of molecular motors that bind and translocate onto nucleic acids. They are involved in essentially every aspect of nucleic acid metabolism: from DNA replication to RNA decay, and thus ensure a large spectrum of functions in the cell, making their study essential. The development of micromanipulation techniques such as magnetic tweezers for the mechanistic study of these enzymes has provided new insights into their behavior and their regulation that were previously unrevealed by bulk assays.

View Article and Find Full Text PDF

G-quadruplex (G4) DNA structures have emerged as important regulatory elements during DNA metabolic transactions. While many in vitro studies have focused on the kinetics of G4 formation within DNA single-strands, G4 are found in vivo in double-stranded DNA regions, where their formation is challenged by the complementary strand. Since the energy of hybridization of Watson-Crick structures dominates the energy of G4 folding, this competition should play a critical role on G4 persistence.

View Article and Find Full Text PDF

Accurate decoding of nucleic acid variation is critical to understand the complexity and regulation of genome function. Here we use a single-molecule magnetic tweezer (MT) platform to identify sequence variation and map a range of important epigenetic base modifications with high sensitivity, specificity, and precision in the same single molecules of DNA or RNA. We have also developed a highly specific amplification-free CRISPR-Cas enrichment strategy to isolate genomic regions from native DNA.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Slx5/8 complex is the founding member of a recently defined class of SUMO-targeted ubiquitin ligases (STUbLs). Slx5/8 has been implicated in genome stability and transcription, but the precise contribution is unclear. To characterise Slx5/8 function, we determined genome-wide changes in gene expression upon loss of either subunit.

View Article and Find Full Text PDF

Like many asymmetrically dividing cells, budding yeast segregates mitotic spindle poles nonrandomly between mother and daughter cells. During metaphase, the spindle positioning protein Kar9 accumulates asymmetrically, localizing specifically to astral microtubules emanating from the old spindle pole body (SPB) and driving its segregation to the bud. Here, we show that the SPB component Nud1/centriolin acts through the mitotic exit network (MEN) to specify asymmetric SPB inheritance.

View Article and Find Full Text PDF

Studies on cell division traditionally focus on the mechanisms of chromosome segregation and cytokinesis, yet we know comparatively little about how organelles segregate. Analysis of organelle partitioning in asymmetrically dividing cells has provided insights into the mechanisms through which cells control organelle distribution. Interestingly, these studies have revealed that segregation mechanisms frequently link organelle distribution to organelle growth and formation.

View Article and Find Full Text PDF

The Notch signalling pathway is conserved among higher metazoans and is used repeatedly throughout development to specify distinct cell fates among populations of equipotent cells. Mounting evidence suggests that Notch signalling may also be crucial in neuronal function in postmitotic, differentiated neurons. Here, we demonstrate a novel role for the canonical Notch signalling pathway in postmitotic neurons during a specialised ;diapause-like' post-embryonic developmental stage in C.

View Article and Find Full Text PDF

Background: The Retinoblastoma gene product (Rb) has been shown to regulate the transcription of key genes involved in cell growth and proliferation. Consistent with this, mutations in Rb are associated with numerous types of cancer making it a critical tumour suppressor gene. Its function is conferred through a large multiprotein complex that exhibits a dual function in both activation and repression of gene targets.

View Article and Find Full Text PDF