Background: Functional characterization of single nucleotide variants (SNVs) involves two steps, the first step is to convert DNA to protein and the second step is to visualize protein sequences with their structures. As massively parallel sequencing has emerged as a leading technology in genomics, resulting in a significant increase in data volume, direct visualization of SNVs together with associated protein sequences/structures in a new user interface (UI) would be a more effective way to assess their potential effects on protein function.
Results: We have developed BioVR, an easy-to-use interactive, virtual reality (VR)-assisted platform for integrated visual analysis of DNA/RNA/protein sequences and protein structures using Unity3D and the C# programming language.
Objective: We built India Allele Finder, an online searchable database and command line tool, that gives researchers access to variant frequencies of Indian Telugu individuals, using publicly available fastq data from the 1000 Genomes Project. Access to appropriate population-based genomic variant annotation can accelerate the interpretation of genomic sequencing data. In particular, exome analysis of individuals of Indian descent will identify population variants not reflected in European exomes, complicating genomic analysis for such individuals.
View Article and Find Full Text PDF