Stable-isotope labeling with amino acids in cell culture (SILAC)-based metabolic labeling is a widely adopted proteomics approach that enables quantitative comparisons among a variety of experimental conditions. Despite its quantitative capacity, SILAC experiments analyzed with data-dependent acquisition (DDA) do not fully leverage peptide pair information for identification and suffer from undersampling compared to label-free proteomic experiments. Herein, we developed a DDA strategy that coisolates and fragments SILAC peptide pairs and uses y-ions for their relative quantification.
View Article and Find Full Text PDFBackground: Diabetes is a risk factor associated with pancreatic ductal adenocarcinoma (PDAC), and new adult-onset diabetes can be an early sign of pancreatic malignancy. Development of blood-based biomarkers to identify diabetic patients who warrant imaging tests for cancer detection may represent a realistic approach to facilitate earlier diagnosis of PDAC in a risk population.
Methods: A spectral library-based proteomic platform was applied to interrogate biomarker candidates in plasma samples from clinically well-defined diabetic cohorts with and without PDAC.
Multiplexed quantitative analyses of complex proteomes enable deep biological insight. While a multitude of workflows have been developed for multiplexed analyses, the most quantitatively accurate method (SPS-MS3) suffers from long acquisition duty cycles. We built a new, real-time database search (RTS) platform, Orbiter, to combat the SPS-MS3 method's longer duty cycles.
View Article and Find Full Text PDFProtein identification by tandem mass spectrometry sequence database searching is a standard practice in many proteomics laboratories. The de facto standard for the representation of sequence databases used as input to sequence database search tools is the FASTA format. The Human Proteome Organization's Proteomics Standards Initiative has developed an extension to the FASTA format termed the proteomics standards initiative extended FASTA format or PSI extended FASTA format (PEFF) where additional information such as structural annotations are encoded in the protein description lines.
View Article and Find Full Text PDFMolecular interactions between two different classes of β-lactamase enzymes and outer membrane protein A (OmpA) were studied by in vivo chemical cross-linking of a multi-drug-resistant strain of AB5075. Class A β-lactamase blaGES-11 and Class D β-lactamase Oxa23, responsible for hydrolysis of different types of β-lactam antibiotics, were found to be cross-linked to similar lysine sites of the periplasmic domain of outer membrane protein OmpA, despite low sequence homology between the two enzymes. The findings from in vivo XL-MS suggest that the interacting surfaces between both β-lactamase enzymes and OmpA are conserved during molecular evolution, and the OmpA C-terminus domain serves an important function of anchoring different types of β-lactamase enzymes in the periplasmic space.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer that is characterized by its poor prognosis, rapid progression and development of drug resistance. Chemotherapy is a vital treatment option for most of PDAC patients. Stratification of PDAC patients, who would have a higher likelihood of responding to chemotherapy, could facilitate treatment selection and patient management.
View Article and Find Full Text PDFMass-spectrometry-based proteomics enables the high-throughput identification and quantification of proteins, including sequence variants and post-translational modifications (PTMs) in biological samples. However, most workflows require that such variations be included in the search space used to analyze the data, and doing so remains challenging with most analysis tools. In order to facilitate the search for known sequence variants and PTMs, the Proteomics Standards Initiative (PSI) has designed and implemented the PSI extended FASTA format (PEFF).
View Article and Find Full Text PDFChronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood.
View Article and Find Full Text PDFIn cells, intra- and intermolecular interactions of proteins confer function, and the dynamic modulation of this interactome is critical to meet the changing needs required to support life. Cross-linking and mass spectrometry (XL-MS) enable the detection of both intra- and intermolecular protein interactions in organelles, cells, tissues, and organs. Quantitative XL-MS enables the detection of interactome changes in cells due to environmental, phenotypic, pharmacological, or genetic perturbations.
View Article and Find Full Text PDFADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize.
View Article and Find Full Text PDFChemical cross-linking combined with mass spectrometry provides a method to study protein structures and interactions. The introduction of cleavable bonds in a cross-linker provides an avenue to decouple released peptide masses from their precursor species, greatly simplifying the downstream search, allowing for whole proteome investigations to be performed. Typically, these experiments have been challenging to carry out, often utilizing nonstandard methods to fully identify cross-linked peptides.
View Article and Find Full Text PDFMotivation: Complex microbial communities can be characterized by metagenomics and metaproteomics. However, metagenome assemblies often generate enormous, and yet incomplete, protein databases, which undermines the identification of peptides and proteins in metaproteomics. This challenge calls for increased discrimination of true identifications from false identifications by database searching and filtering algorithms in metaproteomics.
View Article and Find Full Text PDFGut-homing αβ CD4 T lymphocytes have been shown to be preferentially targeted by human immunodeficiency virus type 1 (HIV-1) and are implicated in HIV-1 pathogenesis. Previous studies demonstrated that HIV-1 envelope protein gp120 binds and signals through αβ and that this likely contributes to the infection of αβ T cells and promotes cell-to-cell virus transmission. Structures within the second variable loop (V2) of gp120, including the tripeptide motif LDV/I, are thought to mediate gp120-αβ binding.
View Article and Find Full Text PDFQuantitative measurement of chemically cross-linked proteins is crucial to reveal dynamic information about protein structures and protein-protein interactions and how these are differentially regulated during stress, aging, drug treatment, and most perturbations. Previously, we demonstrated how quantitative in vivo cross-linking (CL) with stable isotope labeling of amino acids in cell culture (SILAC) enables both heritable and dynamic changes in cells to be visualized. In this work, we demonstrate the technical feasibility of proteome-scale quantitative in vivo CL-MS using isotope-labeled protein interaction reporter (PIR) cross-linkers and E.
View Article and Find Full Text PDFChemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes.
View Article and Find Full Text PDFThe advent of high-resolution and frequency mass spectrometry has ushered in an era of data-independent acquisition (DIA). This approach affords enormous multiplexing capacity and is particularly suitable for clinical biomarker studies. However, DIA-based quantification of clinical plasma samples is a daunting task due to the high complexity of clinical plasma samples, the diversity of peptides within the samples, and the high biologic dynamic range of plasma proteins.
View Article and Find Full Text PDFThe nosocomial pathogen Acinetobacter baumannii is a frequent cause of hospital-acquired infections worldwide and is a challenge for treatment due to its evolved resistance to antibiotics, including carbapenems. Here, to gain insight on A. baumannii antibiotic resistance mechanisms, we analyse the protein interaction network of a multidrug-resistant A.
View Article and Find Full Text PDFHsp90 belongs to a family of some of the most highly expressed heat shock proteins that function as molecular chaperones to protect the proteome not only from the heat shock but also from other misfolding events. As many client proteins of Hsp90 are involved in oncogenesis, this chaperone has been the focus of intense research efforts. Yet, we lack structural information for how Hsp90 interacts with co-chaperones and client proteins.
View Article and Find Full Text PDFMotivation: Large-scale chemical cross-linking with mass spectrometry (XL-MS) analyses are quickly becoming a powerful means for high-throughput determination of protein structural information and protein-protein interactions. Recent studies have garnered thousands of cross-linked interactions, yet the field lacks an effective tool to compile experimental data or access the network and structural knowledge for these large scale analyses. We present XLinkDB 2.
View Article and Find Full Text PDFMethods harnessing protein cross-linking and mass spectrometry (XL-MS) offer high-throughput means to identify protein-protein interactions (PPIs) and structural interfaces of protein complexes. Yet, specialized data dependent methods and search algorithms are often required to confidently assign peptide identifications to spectra. To improve the efficiency of matching high confidence spectra, we developed a spectral library based approach to search cross-linked peptide data derived from Protein Interaction Reporter (PIR) methods using the spectral library search algorithm, SpectraST.
View Article and Find Full Text PDFUnlabelled: Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified.
View Article and Find Full Text PDFChemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes.
View Article and Find Full Text PDF