Purpose: [131I]meta-iodobenzylguanidine ([131I]MIBG) is a targeted radiotherapeutic administered systemically to deliver beta particle radiation in neuroblastoma. However, relapses in the bone marrow are common. [211At]meta-astatobenzylguanidine ([211At] MABG) is an alpha particle emitter with higher biological effectiveness and short path length which effectively sterilizes microscopic residual disease.
View Article and Find Full Text PDFBackground: The treatment of high-risk neuroblastoma continues to present a formidable challenge to pediatric oncology. Previous studies have shown that Bromodomain and extraterminal (BET) inhibitors can inhibit MYCN expression and suppress MYCN-amplified neuroblastoma in vivo. Furthermore, alterations within RAS-MAPK (mitogen-activated protein kinase) signaling play significant roles in neuroblastoma initiation, maintenance, and relapse, and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors demonstrate efficacy in subsets of neuroblastoma preclinical models.
View Article and Find Full Text PDFBackground: Neuroblastoma is a pediatric malignancy, and most tumor cells express the norepinephrine transporter (NET) enabling uptake of NET ligands. Meta-iodobenzylguanidine (MIBG) is a NET-specific ligand used as a highly specific imaging agent and targeted radiotherapeutic. Patients with neuroblastoma frequently require sedation during targeted radiotherapy.
View Article and Find Full Text PDFPurpose: Immune responses to antigens originating in the central nervous system (CNS) are generally attenuated, as collateral damage can have devastating consequences. The significance of this finding for the efficacy of tumor-targeted immunotherapies is largely unknown.
Experimental Design: The B16 murine melanoma model was used to compare cytotoxic responses against established tumors in the CNS and in the periphery.
Lymphocyte Activation Gene - 3 (LAG-3) is an immune checkpoint molecule that regulates both T-cell activation and homeostasis. However, the molecular mechanisms underlying LAG-3's function are generally unknown. Using a model in which LAG-3 blockade or absence reliably augmented homeostatic proliferation in vivo, we found that IL-2 and STAT5 are critical for LAG-3 function.
View Article and Find Full Text PDF