Publications by authors named "Jimmy C Kromann"

Lipophilicity, as measured by the partition coefficient between octanol and water (log ), is a key parameter in early drug discovery research. However, measuring log experimentally is difficult for specific compounds and log ranges. The resulting lack of reliable experimental data impedes development of accurate in silico models for such compounds.

View Article and Find Full Text PDF

The PM6 implementation in the GAMESS program is extended to elements requiring -integrals and interfaced with the conducter-like polarized continuum model of solvation, including gradients. The accuracy of aqueous solvation energies computed using AM1, PM3, PM6, and DFT tight binding (DFTB) and the Solvation Model Density (SMD) continuum solvation model is tested using the Minnesota Solvation Database data set. The errors in SMD solvation energies predicted using Neglect of Diatomic Differential Overlap (NDDO)-based methods are considerably larger than when using density functional theory (DFT) and HF, with root mean square error (RMSE) values of 3.

View Article and Find Full Text PDF

The connectivity-based hierarchy (CBH) protocol for computing accurate reaction enthalpies developed by Sengupta and Raghavachari is tested for fast ab initio methods (PBEh-3c, HF-3c, and HF/STO-3G), tight-binding density functional theory (DFT) methods (GFN-xTB, DFTB, and DFTB-D3), and neglect-of-diatomic-differential-overlap (NDDO)-based semiempirical methods (AM1, PM3, PM6, PM6-DH+, PM6-D2, PM6-D3H+, PM6-D3H4X, PM7, and OM2) using the same set of 25 reactions as in the original study. For the CBH-2 scheme, which reflects the change in the immediate chemical environment of all of the heavy atoms, the respective mean unsigned error relative to G4 for PBEh-3c, HF-3c, HF/STO-3G, GFN-xTB, DFTB-D3, DFTB, PM3, AM1, PM6, PM6-DH+, PM6-D3, PM6-D3H+, PM6-D3H4X, PM7, and OM2 are 1.9, 2.

View Article and Find Full Text PDF

While computational prediction of chemical reactivity is possible it usually requires expert knowledge and there are relatively few computational tools that can be used by a bench chemist to help guide synthesis. The RegioSQM method for predicting the regioselectivity of electrophilic aromatic substitution reactions of heteroaromatic systems is presented in this paper. RegioSQM protonates all aromatic C-H carbon atoms and identifies those with the lowest free energies in chloroform using the PM3 semiempirical method as the most nucleophilic center.

View Article and Find Full Text PDF

To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy in solution is computed via a thermodynamic cycle that integrates dimer binding energy in the gas phase at the coupled cluster level and solute-solvent interaction with density functional theory; the estimated uncertainty of such calculated interaction energy is ±1.5 kcal/mol.

View Article and Find Full Text PDF

The PM6 semiempirical method and the dispersion and hydrogen bond-corrected PM6-D3H+ method are used together with the SMD and COSMO continuum solvation models to predict pKa values of pyridines, alcohols, phenols, benzoic acids, carboxylic acids, and phenols using isodesmic reactions and compared to published ab initio results. The pKa values of pyridines, alcohols, phenols, and benzoic acids considered in this study can generally be predicted with PM6 and ab initio methods to within the same overall accuracy, with average mean absolute differences (MADs) of 0.6-0.

View Article and Find Full Text PDF

We have collected computed barrier heights and reaction energies (and associated model structures) for five enzymes from studies published by Himo and co-workers. Using this data, obtained at the B3LYP/6- 311+G(2d,2p)[LANL2DZ]//B3LYP/6-31G(d,p) level of theory, we then benchmark PM6, PM7, PM7-TS, and DFTB3 and discuss the influence of system size, bulk solvation, and geometry re-optimization on the error. The mean absolute differences (MADs) observed for these five enzyme model systems are similar to those observed for PM6 and PM7 for smaller systems (10-15 kcal/mol), while DFTB results in a MAD that is significantly lower (6 kcal/mol).

View Article and Find Full Text PDF

We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth.

View Article and Find Full Text PDF