Publications by authors named "Jiming Hu"

Cell analysis is crucial to contemporary biomedical research, as it plays a pivotal role in elucidating life processes and advancing disease diagnosis and treatment. Raman spectroscopy, harnessing distinctive molecular vibrational data, provides a non-destructive method for cell analysis. This review surveys the progress of Raman spectroscopy in cellular analysis, emphasizing its utility in identifying individual cells, monitoring biomolecules, and assessing intracellular environments.

View Article and Find Full Text PDF

A SPE-SERS method was developed for the detection of several antibiotic residues in dairy products. Gold nanoparticles (Au NPs) encapsulated with an ultrathin Cr-MIL-101 shell (Au@Cr-MIL-101 NPs) have been synthesized, and the thickness of Cr-MIL-101 shell can be precisely controlled to 3 nm. As a superior solid phase extraction (SPE) adsorbent, Cr-MIL-101 acts as a shell layer to effectively enrich antibiotics within the localized surface plasmon resonance (LSPR) field of Au NPs, which enhances the SERS signal and eliminates background interference.

View Article and Find Full Text PDF

The accurate and sensitive detection of foodborne pathogens is critical for timely food quality supervision and human health. To address this issue, herein, we developed a simple and novel surface-enhanced Raman scattering (SERS) assay using -mercaptobenzoic acid (MBN)-modified gold nanoparticles (Au NPs) and magnetic beads for interference-free detection of (). This assay technique cleverly reduced silver ions (Ag) on the surface of (bacteria@Ag NPs), and the functionalized magnetic beads (capture probes) captured and enriched bacteria@Ag NPs, forming the structure of the capture probes-bacteria@Ag NPs.

View Article and Find Full Text PDF

The primary characteristics of a clinical assay are its accuracy and speed. For alkaline phosphatase (ALP) monitoring in medical treatment, a rapid, reliable surface-enhanced Raman scattering (SERS) detection technique was designed based on the controlled "hot spot" effect caused by the mediation of silver ions (Ag). Consisting of functionalized Au nanoparticles (NPs), Ag, and the enzyme substrate 2-phospho-L-ascorbic acid triso-dium salt (AAP), the fabricated detection technique can achieve a reliable clinical assay for ALP detection in human serum within several minutes.

View Article and Find Full Text PDF

By means of their specific interactions with different metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. In view of natural metallopeptides, scientists have proposed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing various sensors. However, the design of new peptide ligands requires a deep understanding of the structures, assembly properties, and dynamic behaviors of such peptides.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) represent recently discovered novel regulatory non-coding RNAs. While they are present in many eukaryotes, there has been limited research on plant circRNAs. We developed PlantCircRNA (https://plant.

View Article and Find Full Text PDF

Accurate identification of (SD) offers crucial technical support for aquaculture practices and behavioral research of this species. However, the task of discerning from complex underwater settings, fluctuating light conditions, and schools of fish presents a challenge. This paper proposes an intelligent recognition model based on the YOLOv8 network called SD-YOLOv8.

View Article and Find Full Text PDF

The gene is a critical biomarker for the potential risk of arsenic exposure in paddy soil. However, on-site screening of is limited by the lack of high-throughput point-of-use (POU) methods. Here, a multiplex CRISPR/Cas12a microfluidic paper-based analytical device (μPAD) was constructed for the high-throughput POU analysis of , with cascade amplification driven by coupling crRNA-enhanced Cas12a and horseradish peroxidase (HRP)-modified probes.

View Article and Find Full Text PDF

Although more and more attention has been focused on introns and the important role of plant introns in plant growth and development has been discovered, there is still a lack of an open and comprehensive database on plant introns with functional elements in current research. In order to make full use of large-scale sequencing data and help researchers in related fields to achieve high-throughput functional verification of identified plant introns with functional elements, we designed a database containing five plant species, PlantIntronDB and systematically analyzed 358, 59, 185, 210 and 141 RNA-seq samples from Arabidopsis thaliana (Arabidopsis), Gossypium raimondii (cotton), Zea mays (maize), Brassica napus (oilseed rape) and Oryza sativa Japonica Group (rice). In total, we found 100 126 introns that host functional elements in these five species.

View Article and Find Full Text PDF

A "double immobilized" superhydrophobic and lubricated slippery surface was prepared by simultaneously immobilizing lubricating oil and bactericide molecules. The coordination function of metal organic frameworks (MOFs) was utilized to immobilize trimesic acid, a fungicide, as a ligand of the MOF by the cathodic electrodeposition technique. Aminated silicone oil was used as a lubricating oil and was immobilized to the superhydrophobic MOF film by the curing reaction with isocyanates.

View Article and Find Full Text PDF

Intronic RNAs have been overlooked for a long time: They are functional, but treated as "junk." In this work, we designed a new sequencing strategy to investigate intronic RNAs. By using intron-capture RNA-seq, we systematically analyzed the intronic RNAs in Arabidopsis by zooming into the intronic regions an order of magnitude deeper than in previous work.

View Article and Find Full Text PDF
Article Synopsis
  • Surface-enhanced Raman scattering (SERS) technology faces reliability and reproducibility challenges in bio-related analysis, but Prussian blue (PB)-based SERS tags offer a potential solution due to their distinctive Raman band that allows for background-free detection.
  • The multi-layer structure of PB ensures stable signal output by preventing the desorption of Raman reporters, alongside possessing excellent multiplexing capabilities for analyzing multiple targets simultaneously.
  • This minireview emphasizes the current state and future prospects of PB-based SERS tags in various biological applications, including quantification, cell imaging, and their roles in clinical diagnosis and treatment.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common nervous system disease to affect mostly elderly people over the age of 65 years. However, the diagnosis of AD is mainly depend on the imaging examination, clinical assessments and neuropsychological tests, which may get error diagnosis results and are not able to detect early AD. Here, a rapid, non-invasive, and high accuracy diagnostic method for AD especially early AD is provided based on the laser tweezers Raman spectroscopy (LTRS) combined with machine learning algorithms.

View Article and Find Full Text PDF

Developing security inks with spectral outputs/multiple colors, which have unique identification characteristics, is of great importance in enhancing the anti-counterfeiting strength of ink anti-counterfeiting technology. Herein, a print-driven triple-bond coding mode is proposed for the first time. Two kinds of triple-bond-containing polymeric nanoparticles (NPs) with Raman shifts at 2227 and 2241 cm have been designed into printable ink, and the decimal coding output can be easily obtained by reasonably adjusting the proportions of the two polymeric NPs.

View Article and Find Full Text PDF

Developing a rapid, low cost and sensitive sensing strategy for undifferentiated detection and fast killing of bacterial pathogens are critical to alleviating bacteria infections. Here, we propose a direct photoreduction method to synthesize the SERS tag by integrating poly(4-cyanostyrene) nanoparticles (NPs) and silver ions, which are applied as bio-sensing system for bacteria sensing and fast killing. Under a focused laser spot, silver ions on the surface of the poly(4-cyanostyrene) NPs could be photoreduced into Ag NPs, thereby causing the Raman signal amplification of poly(4-cyanostyrene) NPs up to 40 times, and there is a good linear correlation between the Raman intensity of poly(4-cyanostyrene) NPs and different concentrations of Ag.

View Article and Find Full Text PDF

Background: Tyrosine kinase inhibitors (TKIs) have achieved revolutionary results in the treatment of a wide range of tumors, and many studies on this topic continue to be published every year. Some of the published reviews provide great value for us to understand TKIs. However, there is a lack of studies on the knowledge structure, bibliometric analysis, and visualization results in TKIs research.

View Article and Find Full Text PDF

Bacteria-infected wounds have imposed serious challenges in human health whereas the abuse of antibiotics makes bacteria drug-resistant and becoming more and more difficult to deal with. Herein, we developed a drug-free three-layered photothermal bactericide from inside to outside consisting of copper sulfide (CuS), gold (Au) and zinc-doped Prussian blue analogues (ZnPBA) (named as CuS@Au@ZnPBA). The CuS@Au@ZnPBA was demonstrated to possess remarkably-improved photothermal property and excellent biosafety.

View Article and Find Full Text PDF

In the work, a rapid and accurate biosensor for mercury ions (Hg) was constructed, with which aggregation of dual-modified (DGPFHR- and CALNN-) gold nanoparticles (D/C-AuNPs) could be triggered by the high specificity of peptides to Hg. The given peptide DGPFHR possesses great capability of capturing Hg, accompanied by the conformational folding. Under the circumstances, D/C-AuNPs were employed as the detection probes to accomplish the quantitative analysis of Hg.

View Article and Find Full Text PDF

Stimulated Raman scattering (SRS) microscopy in combination with innovative tagging strategies offers great potential as a universal high-throughput biomedical imaging tool. Here, we report rationally tailored small molecular monomers containing triple-bond units with large Raman scattering cross-sections, which can be polymerized at the nanoscale for enhancement of SRS contrast with smaller but brighter optical nanotags with artificial fingerprint output. From this, a class of triple-bond rich polymer nanoparticles (NPs) was engineered by regulating the relative dosages of three chemically different triple-bond monomers in co-polymerization.

View Article and Find Full Text PDF

We herein report a novel, reliable and inexpensive method for detecting esophageal cancer using blood plasma resonance Raman spectroscopy combined with multivariate analysis methods. The blood plasma samples were divided into late stage cancer group (n = 164), early stage cancer group (n = 35) and normal group (n = 135) based on clinical pathological diagnosis. Using a specially designed quartz capillary tube as sample holder, we obtained higher quality resonance Raman spectra of blood plasma than existing method.

View Article and Find Full Text PDF

Background: During the coronavirus disease 2019 (COVID-19) pandemic, exploring factors influencing nosocomial infection among frontline nurses may provide evidence to optimize prevention strategies in hospitals.

Method: A large-scale online questionnaire survey of nurses' state-trait anxiety, job burnout, risk perception, workplace safety perception, knowledge about nosocomial infection, and preventive practices was conducted with 2795 frontline nurses working in the COVID-19 wards of six hospitals in Hubei Province, China, from February 1 to April 1, 2020. The questionnaire data were analyzed using the structural equation modeling (SEM) method to reveal the mechanisms influencing nurses' risk perception and preventive practices related to nosocomial COVID-19 infection.

View Article and Find Full Text PDF

The reliable determination of the Ag(I) affinity for biomolecules is an essential issue in the fields of structural analysis and sensor design. However, the urgent problem confronting researchers is lack of a direct and accurate Ag(I) affinity evaluation as a reference standard for ligand analysis. We communicated here a straightforward and high-efficiency method of measuring Ag(I) affinity exactly on the basis of the unique calculation algorithm and the design of a special peptide RFPRDD (P) as Ag(I) binding motif.

View Article and Find Full Text PDF

Although homogeneous detection of some biomolecules has been of great significance in clinical assay, it faces great challenges in achieving precise imaging of biomolecules. In addition, nonspecific adsorption between probes and biomolecules and low sensitivity are still unfathomed problems. Herein, we developed a promoted "Click" surface enhanced Raman scattering (SERS) strategy for realizing highly selective homogeneous detection of biomolecules by simultaneous dual enhanced SERS emissions, obtaining mutually confirmed logical judgment.

View Article and Find Full Text PDF

Multiplex surface-enhanced Raman scattering (SERS) detection of markers without background in tumor biosystems has its superiority over other optical methods. Herein, we reported a strategy of quantitative discrimination of two breast cancer cell subtypes. Based on our previous studies, two kinds of Prussian blue analogue coated gold nanoparticles (Au@PBA NPs) were designed and synthesized by the replacement of Fe with Pb or Cu.

View Article and Find Full Text PDF

For the first time, we present an original sensing strategy with an ultra-wide detection window from 17 nM to 20 mM to detect SCN- ions. Initially, we investigated the clustering and optical properties of noble metal sol nanoparticles (NPs) due to the competitive interaction of thiocyanate ions (SCN-) and cetyltrimethylammonium bromide (CTAB) under weak acidic conditions, and found that different dimensions and scales of nanoclusters containing the alkyne-embedded Au@Ag NPs and relatively small Ag NPs could be achieved by the mediation of CTAB through electrostatic forces and hydrophobic interaction, in which SCN- could be covalently bonded with the silver surface of NPs to form a compact molecular layer (-Ag-S-C[triple bond, length as m-dash]N), and CTAB could only occupy remaining sites. In this process, we found that SCN- always runs counter to CTAB and tends to dissolve nanoclusters, so that they occupy the exposed surface of NPs in nanoclusters rather than the binding sites of one another.

View Article and Find Full Text PDF