Publications by authors named "Jimin Zhan"

Multiple distinct specialized regions shape the architecture of maize leaves. Among them, the fringe-like and wedge-shaped auricles alter the angle between the leaf and stalk, which is a key trait in crop plant architecture. As planting density increased, a small leaf angle (LA) was typically selected to promote crop light capture efficiency and yield.

View Article and Find Full Text PDF

How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops.

View Article and Find Full Text PDF

Improving osmotic stress tolerance is critical to help crops to thrive and maintain high yields in adverse environments. Here, we characterized a core subunit of the transport protein particle (TRAPP) complex, ZmBET5L1, in maize using knowledge-driven data mining and genome editing. We found that ZmBET5L1 can interact with TRAPP I complex subunits and act as a tethering factor to mediate vesicle aggregation and targeting from the endoplasmic reticulum to the Golgi apparatus.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified a specific gene in maize, qEL7, that regulates ear length, flower number, and fertility, which are important factors for grain yield.
  • The gene identified encodes for an enzyme involved in ethylene production, influencing developmental processes in maize inflorescences.
  • Gene editing of this gene resulted in reduced ethylene production and increased grain yield, suggesting that manipulating ethylene levels could enhance productivity in maize and similar crops.
View Article and Find Full Text PDF