Publications by authors named "Jimena Manzano"

Thyroid hormones have important actions in the developing central nervous system. We describe here a novel action of thyroid hormone and its nuclear receptors on maturation of cerebellar gamma-aminobutyric acid (GABA)-ergic interneurons from their precursor cells. In rats, the density of GABAergic terminals in the cerebellum was decreased by hypothyroidism, as shown by immunohistochemistry for the GABA transporter GAT-1.

View Article and Find Full Text PDF

Thyroid hormone influences brain maturation through interaction with nuclear receptors and regulation of gene expression. Their role on astrocyte maturation remains unclear. We have analyzed the role of thyroid hormone in rat cerebellar astrocyte maturation by comparing the sequential patterns of intermediate filament expression in normal and hypothyroid animals.

View Article and Find Full Text PDF

The transcriptional properties of unliganded thyroid hormone receptors are thought to cause the misdevelopment during hypothyroidism of several functions essential for adult life. To specifically determine the role of unliganded thyroid hormone receptor alpha1 (TRalpha1) in neuronal tissues, we introduced a mutation into the mouse TRalpha1 gene that lowers affinity to thyroid hormone (TH) 10-fold. The resulting heterozygous mice exhibit several distinct neurological abnormalities: extreme anxiety, reduced recognition memory, and locomotor dysfunction.

View Article and Find Full Text PDF

Although the effects of thyroid hormones on the development of neurons and oligodendrocytes are well documented, less is known about the hormonal effects on astrocytes. Our analyses of cerebellar slices from 2-month-old T(3) receptor protein (TR)alpha1-deficient mice show that mature astrocytes, Golgi epithelial cells, and their Bergmann processes had strongly reduced glial fibrillary acidic protein (GFAP) and nestin immunoreactivity, in contrast to wild-type mice. Furthermore, the Bergmann processes exhibited an irregular GFAP staining.

View Article and Find Full Text PDF

The availability of synthetic thyroid hormone receptor agonists provides a valuable tool to analyze whether specific receptor isoforms mediate specific physiological responses to thyroid hormone. GC-1 is a thyroid hormone analog displaying selectivity for thyroid hormone receptor beta. We have analyzed the effect of GC-1 on expression of thyroid hormone target genes in the cerebrum and cerebellum.

View Article and Find Full Text PDF

Thyroid hormone (T3) controls critical aspects of cerebellar development, such as migration of postmitotic granule cells and terminal differentiation of Purkinje cells. T3 acts through nuclear receptors (TR) of two types, TRalpha1 and TRbeta, that either repress or activate gene expression. We have analyzed the cerebellar structure of developing mice lacking the TRalpha1 isoform, which normally accounts for about 80% of T3 receptors in the cerebellum.

View Article and Find Full Text PDF