J Exp Zool A Ecol Integr Physiol
July 2023
Ecophysiological plasticity determines, to a great extent, the geographic distribution and the vulnerability of ectotherms to climate change. We studied the relationship between locomotor performance and temperature of Liolaemus elongatus lizards in three populations in northern Patagonia, Argentina, differing in thermal characteristics. We related the thermophysiological and locomotor performance parameters with the environmental conditions currently experienced by these populations and analyzed whether the expected increment of the environmental temperature due to climate change could affect these vital traits.
View Article and Find Full Text PDFThe immune state is an essential component of survival as it directly influences physiological performance and health status. Variation in the leukocyte profile, a significantly increase in body temperature, and a detriment of the eco-physiological performance are among the possible consequences of an unhealthy state. In this study we analyse and discuss how field body temperature, preferred body temperature, the speed for sprint and long runs, locomotor stamina, and body condition can be affected by the immunological state (i.
View Article and Find Full Text PDFGlobal warming can significantly affect many aspects of the biology of animal species, including their thermal physiology and physiological performance. Thermal performance curves provide a heuristic model to evaluate the impacts of temperature on the ecophysiology of ectotherms. When integrated with other thermal biology parameters, they can be used to predict the impacts of climate change on individual fitness and population viability.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
February 2018
Integrative behavioral studies show that the interplay between individual physiology and social behavior influences the ecology of the species, ultimately affecting individual fitness. Particularly in lizards, color polymorphism is associated with differential behaviors and reproductive strategies, which are evident in mature males during the mating season. Dominant males generally have greater endurance, higher body temperature, and larger bodies than submissive males, so they can acquire and defend larger territories and have greater access to females for mating.
View Article and Find Full Text PDFReproductive and life history patterns in reptiles are tightly related to the environmental conditions, so male reproductive cycles have been historically characterized as continuous, for tropical lizards, or seasonal, for temperate lizards. However, males of Liolaemus and Phymaturus lizards (Liolaemidae), from cold temperate climates of high altitudes or latitudes in Argentina and Chile, have developed a variety of reproductive cycles to coordinate with the short female reproductive season and to deal with the low frequency of reproductive females in the population. Using gonadal histology and morphological analysis, we describe the male reproductive biology, fat storage and sexual dimorphism of the viviparous lizards Liolaemus sarmientoi and Liolaemus magellanicus that inhabit an austral grass steppe at 51°S, in the southern limit of the American continent.
View Article and Find Full Text PDFAs niche specialist species, lizards from tropical environments are characterized by a low tolerance and high physiological sensitivity to temperature changes. The extent of vulnerability to thermal changes depends on the lizard's physiological plasticity to adjust the environmental changes. Herein we studied the thermal biology of Anolis allisoni, an endemic arboreal lizard from the tropical islands of the Banco Chinchorro Biosphere Reserve, Mexico, carried out during April and May 2012 and April 2014.
View Article and Find Full Text PDFThe vulnerability of populations and species to global warming depends not only on the environmental temperatures, but also on the behavioral and physiological abilities to respond to these changes. In this sense, the knowledge of an organism's sensitivity to temperature variation is essential to predict potential responses to climate warming. In particular, it is interesting to know how close species are to their thermal limits in nature and whether physiological plasticity is a potential short-term response to warming climates.
View Article and Find Full Text PDF