Structural Fe in phyllosilicates represents a crucial and potentially renewable reservoir of electron equivalents for contaminants reduction in aquatic and soil systems. However, it remains unclear how in-situ modification of Fe redox states within Fe-bearing phyllosilicates, induced by electron shuttles such as naturally occurring organics, influences the fate of contaminants. Herein, this study investigated the processes and mechanism of Cr(VI) reduction on two typical Fe(II/III)-bearing phyllosilicates, biotite and chlorite, in the presence of cysteine (Cys) at circumneutral pH.
View Article and Find Full Text PDFMagnetite is a reductive Fe(II)-bearing mineral, and its reduction property is considered important for degradation of contaminants in groundwater and anaerobic subsurface environments. However, the redox condition of subsurface environments frequently changes from anaerobic to aerobic owing to natural and anthropogenic disturbances, generating reactive oxygen species (ROS) from the interaction between Fe(II)-bearing minerals and O. Despite this, the mechanism of ROS generation induced by magnetite under aerobic conditions is poorly understood, which may play a crucial role in As(III) oxidation.
View Article and Find Full Text PDFScorodite (FeAsO·HO) is a common arsenic-bearing (As-bearing) iron mineral in near-surface environments that could immobilize or store As in a bound state. In flooded soils, microbe induced Fe(III) or As(V) reduction can increase the mobility and bioavailability of As. Additionally, humic substances can act as electron shuttles to promote this process.
View Article and Find Full Text PDFScorodite (FeAsO·2HO) is a pivotal secondary ferric arsenate that immobilizes most of arsenic (As) in acidic As-contaminated environments, but secondary As pollution may occur during dissolution of scorodite in environments involving redox changes. Reductive dissolution of scorodite by coexisting dissolved Fe (Fe(II)) under anaerobic conditions and its effects on the behavior of As have yet to be examined. Here, this study monitored the changes in mineralogy, solubility and speciation of As during scorodite transformation induced by Fe(II) under anaerobic conditions at pH 7.
View Article and Find Full Text PDFThe first manganese-catalyzed oxidation of organosilanes to silanols with H O under neutral reaction conditions has been accomplished. A variety of organosilanes with alkyl, aryl, alknyl, and heterocyclic substituents were tolerated, as well as sterically hindered organosilanes. The oxidation appears to proceed by a concerted process involving a manganese hydroperoxide species.
View Article and Find Full Text PDFAim Of The Study: Garcinia hanburyi is a traditional herbal medicine with activities of anti-inflammation and hemostasis used by people in South Asia. Gambogic acid (GA) is the main active component extracted from it, which has anticancer and anti-inflammatory effects. The aim of the current study is to investigate the molecular mechanisms of GA's effective anticancer activity.
View Article and Find Full Text PDF