Publications by authors named "Jim-Marcel Knop"

Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life.

View Article and Find Full Text PDF

High pressure deep subsurface environments of Mars may harbor high concentrations of dissolved salts, such as perchlorates, yet we know little about how these salts influence the conditions for life, particularly in combination with high hydrostatic pressure. We investigated the effects of high magnesium perchlorate concentrations compared to sodium and magnesium chloride salts and high pressure on the conformational dynamics and stability of double-stranded B-DNA and, as a representative of a non-canonical DNA structure, a DNA-hairpin (HP), whose structure is known to be rather pressure-sensitive. To this end, fluorescence spectroscopies including single-molecule FRET methodology were applied.

View Article and Find Full Text PDF

Given the emergence of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), which particularly threatens older people with comorbidities such as diabetes mellitus and dementia, understanding the relationship between Covid-19 and other diseases is an important factor for treatment. Possible targets for medical intervention include G-quadruplexes (G4Qs) and their protein interaction partners. We investigated the stability and conformational space of the RG-1 RNA-G-quadruplex of the SARS-CoV-2 N-gene in the presence of salts, cosolutes, crowders and intrinsically disordered peptides, focusing on α-Synuclein and the human islet amyloid polypeptide, which are involved in Parkinson's disease (PD) and type-II diabetes mellitus (T2DM), respectively.

View Article and Find Full Text PDF

The intrinsically disordered protein α-synuclein causes Parkinson's disease by forming toxic oligomeric aggregates inside neurons. Single-molecule FRET experiments revealed conformational changes of noncanonical DNA structures, such as i-motifs and hairpins, in the presence of α-synuclein. Volumetric analyses revealed differences in binding mode, which is also affected by cellular osmolytes.

View Article and Find Full Text PDF

Research on Parkinson's disease most often focuses on the ability of the protein α-synuclein (α-syn) to form oligomers and amyloid fibrils, and how such species promote brain death. However, there are indications that α-syn also plays a gene-regulatory role in the cell nucleus. Noncanonical tetrahelical nucleic acids, G-quadruplexes (G4Q), and i-motifs have been shown to play an important role in the control of genomic events.

View Article and Find Full Text PDF

The effect of an amyloidogenic intrinsically disordered protein, α-synuclein, which is associated with Parkinson's disease (PD), on the conformational dynamics of a DNA hairpin (DNA-HP) was studied by employing the single-molecule Förster resonance energy transfer method. The open-to-closed conformational equilibrium of the DNA-HP is drastically affected by binding of monomeric α-synuclein to the loop region of the DNA-HP. Formation of a protein-bound intermediate conformation is fostered in the presence of an aqueous two-phase system mimicking intracellular liquid-liquid phase separation.

View Article and Find Full Text PDF

In this review we discuss results from temperature and pressure dependent single-molecule Förster resonance energy transfer (smFRET) studies on nucleic acids in the presence of macromolecular crowders and organic osmolytes. As representative examples, we have chosen fragments of both DNAs and RNAs, i.e.

View Article and Find Full Text PDF

We investigated the volumetric and kinetic profile of the conformational landscape of a poly dA loop DNA hairpin (Hp) in the presence of salts, osmolytes and crowding media, mimicking the intracellular milieu, using single-molecule FRET methodology. Pressure modulation was applied to explore the volumetric and hydrational characteristics of the free-energy landscape of the DNA Hp, but also because pressure is a stress factor many organisms have to cope with, e.g.

View Article and Find Full Text PDF

Organisms are thriving in the deep sea at pressures up to the 1 kbar level, which imposes severe stress on the conformational dynamics and stability of their biomolecules. The impact of osmolytes and macromolecular crowders, mimicking intracellular conditions, on the effect of pressure on the conformational dynamics of a human telomeric G-quadruplex (G4) DNA is explored in this study employing single-molecule Förster resonance energy transfer (FRET) experiments. In neat buffer, pressurization favors the parallel/hybrid state of the G4-DNA over the antiparallel conformation at ≈400 bar, finally leading to unfolding beyond 1000 bar.

View Article and Find Full Text PDF