Incorporating biopolymers in packaging foams can contribute to a more circular packaging system, utilizing renewable and compostable materials. Gelatin, with its favorable physicochemical properties, allows for producing gelatin foams via mechanical foaming, a well-established and low-investment process. To improve foam properties, starch can be added to the gelatin formulation.
View Article and Find Full Text PDFGelatin hydrogels are widely used materials that may require surfactants to adjust their solution's surface tension for cell attachment, surface adsorption enhancement, or foaming. However, gelatin is a highly surface-active polymer, and its concentrated solutions usually do not require surfactants to achieve low surface tension. However, anionic surfactants, such as sodium dodecyl sulfate (SDS), interact strongly with gelatin to form complexes that impact its hydrogels' rheological properties, influencing processability and functionality.
View Article and Find Full Text PDFPlastic litter is encountered in aquatic ecosystems across the globe, including polar environments and the deep sea. To mitigate the adverse societal and ecological impacts of this waste, there has been debate on whether 'biodegradable' materials should be granted exemptions from plastic bag bans and levies. However, great care must be exercised when attempting to define this term, due to the broad and complex range of physical and chemical conditions encountered within natural ecosystems.
View Article and Find Full Text PDF