Recent global trade disruptions, due to blockage of the Suez Canal and cascading effects of COVID-19, have altered the movement patterns of commercial ships and may increase worldwide invasions of marine non-indigenous species. Organisms settle on the hulls and underwater surfaces of vessels and can accumulate rapidly, especially when vessels remain stationary during lay-ups and delays. Once present, organisms can persist on vessels for long-periods (months to years), with the potential to release propagules and seed invasions as ships visit ports across the global transportation network.
View Article and Find Full Text PDFAs the US natural gas surplus grows, so does the prospect of establishing new trade partnerships with buyers abroad, a process that has major consequences for global ship movement and ballast water delivery. Since US annual imports of liquefied natural gas (LNG) peaked in 2004-2007, the country is rapidly transitioning from net importer to net exporter of LNG. Combining multiple datasets, we estimated changes in the associated flux of ships' ballast water to the US during 2015-2040, using existing scenarios for projected exports of domestic LNG by ships.
View Article and Find Full Text PDFPopulation geneticists and community ecologists have long recognized the importance of sampling design for uncovering patterns of diversity within and among populations and in communities. Invasion ecologists increasingly have utilized phylogeographical patterns of mitochondrial or chloroplast DNA sequence variation to link introduced populations with putative source populations. However, many studies have ignored lessons from population genetics and community ecology and are vulnerable to sampling errors owing to insufficient field collections.
View Article and Find Full Text PDF