Temperate bacterial viruses (phages) may enter a symbiosis with their host cell, forming a unit called a lysogen. Infection and viral replication are disassociated in lysogens until an induction event such as DNA damage occurs, triggering viral-mediated lysis. The lysogen-lytic viral reproduction switch is central to viral ecology, with diverse ecosystem impacts.
View Article and Find Full Text PDFCoral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial-temporally stable or species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members.
View Article and Find Full Text PDFBacteriophages (phages) defend mucosal surfaces against bacterial infections. However, their complex interactions with their bacterial hosts and with the mucus-covered epithelium remain mostly unexplored. Our previous work demonstrated that T4 phage with Hoc proteins exposed on their capsid adhered to mucin glycoproteins and protected mucus-producing tissue culture cells in vitro.
View Article and Find Full Text PDFCurrent investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical.
View Article and Find Full Text PDFMotivation: Metagenomes are often characterized by high levels of unknown sequences. Reads derived from known microorganisms can easily be identified and analyzed using fast homology search algorithms and a suitable reference database, but the unknown sequences are often ignored in further analyses, biasing conclusions. Nevertheless, it is possible to use more data in a comparative metagenomic analysis by creating a cross-assembly of all reads, i.
View Article and Find Full Text PDFThe species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral-microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year.
View Article and Find Full Text PDFViruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earth's oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases.
View Article and Find Full Text PDFThe use of electron tomography has allowed the three-dimensional membrane topography of the mitochondrion to be better understood. The most striking feature of this topology is the crista junction, a structure that may serve to divide functionally the inner membrane and intermembrane spaces. In situ these junctions seem to have a preferred size and shape independent of the source of the mitochondrion with few exceptions.
View Article and Find Full Text PDF