Hyperpolarized (HP) gas pulmonary MR ventilation images are typically quantified using ventilation defect percent (VDP); however, the test-retest variability of VDP has not been systematically established in multi-center trials. Herein, we perform a systematic review of the test-retest literature on the variability of VDP, and similar metrics, generated from HP MRI. This review utilizes the Medline, EMBASE, and EBM Reviews databases and includes studies that assessed the variability of HP MRI VDP.
View Article and Find Full Text PDFBackground: Pulmonary gas exchange is assessed by the transfer factor of the lungs ( ) for carbon monoxide ( ), and can also be measured with inhaled xenon-129 (Xe) magnetic resonance imaging (MRI). A model has been proposed to estimate from Xe MRI metrics, but this approach has not been fully validated and does not utilise the spatial information provided by three-dimensional Xe MRI.
Methods: Three models for predicting from Xe MRI metrics were compared: 1) a previously-published physiology-based model, 2) multivariable linear regression and 3) random forest regression.
Lung MRI is an important tool in the assessment and monitoring of pediatric and neonatal lung disorders. MRI can provide both similar and complementary image contrast to computed tomography for imaging the lung macrostructure, and beyond this, a number of techniques have been developed for imaging the key functions of the lungs, namely ventilation, perfusion, and gas exchange, through the use of free-breathing proton and hyperpolarized gas MRI. Here, we review the state-of-the-art in MRI methods that have found utility in pediatric and neonatal lung imaging, the structural and physiological information that can be gleaned from such images, and strategies that have been developed to deal with respiratory (and cardiac) motion, and other technological challenges.
View Article and Find Full Text PDFAirway constriction and blockage in obstructive lung diseases cause ventilation heterogeneity and create barriers to effective drug deposition. Established computational particle-deposition models have not accounted for these impacts of disease. We present a new particle-deposition model that calculates ventilation based on the resistance of each airway, such that ventilation responds to airway constriction.
View Article and Find Full Text PDFPurpose: Three-dimensional hyperpolarized Xe gas exchange imaging suffers from low SNR and long breath-holds, which could be improved using compressed sensing (CS). The purpose of this work was to assess whether gas exchange ratio maps are quantitatively preserved in CS-accelerated dissolved-phase Xe imaging and to investigate the feasibility of CS-dissolved Xe imaging with reduced-cost natural abundance (NA) xenon.
Methods: Xe gas exchange imaging was performed at 1.
Purpose: To evaluate the feasibility and utility of a deep learning (DL)-based reconstruction for improving the SNR of hyperpolarized Xe lung ventilation MRI.
Methods: Xe lung ventilation MRI data acquired from patients with asthma and/or chronic obstructive pulmonary disease (COPD) were retrospectively reconstructed with a commercial DL reconstruction pipeline at five different denoising levels. Quantitative imaging metrics of lung ventilation including ventilation defect percentage (VDP) and ventilation heterogeneity index (VH) were compared between each set of DL-reconstructed images and alternative denoising strategies including: filtering, total variation denoising and higher-order singular value decomposition.
Purpose: To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers.
Methods: Sixty-five subjects with no history of chronic lung disease were assessed with Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC).
Background And Purpose: Survival is frequently assessed using Cox proportional hazards (CPH) regression; however, CPH may be too simplistic as it assumes a linear relationship between covariables and the outcome. Alternative, non-linear machine learning (ML)-based approaches, such as random survival forests (RSFs) and, more recently, deep learning (DL) have been proposed; however, these techniques are largely black-box in nature, limiting explainability. We compared CPH, RSF and DL to predict overall survival (OS) of non-small cell lung cancer (NSCLC) patients receiving radiotherapy using pre-treatment covariables.
View Article and Find Full Text PDFPrevious studies have associated COVID-19 symptoms severity with levels of physical activity. We therefore investigated longitudinal trajectories of COVID-19 symptoms in a cohort of healthcare workers (HCWs) with non-hospitalised COVID-19 and their real-world physical activity. 121 HCWs with a history of COVID-19 infection who had symptoms monitored through at least two research clinic visits, and via smartphone were examined.
View Article and Find Full Text PDFThe patterns of idiopathic pulmonary fibrosis (IPF) lung disease that directly correspond to elevated hyperpolarised gas diffusion-weighted (DW) MRI metrics are currently unknown. This study aims to develop a spatial co-registration framework for a voxel-wise comparison of hyperpolarised gas DW-MRI and CALIPER quantitative CT patterns. Sixteen IPF patients underwent He DW-MRI and CT at baseline, and eleven patients had a 1-year follow-up DW-MRI.
View Article and Find Full Text PDF: Evaluating left ventricular filling pressure (LVFP) plays a crucial role in diagnosing and managing heart failure (HF). While traditional assessment methods involve multi-parametric transthoracic echocardiography (TTE) or right heart catheterisation (RHC), cardiovascular magnetic resonance (CMR) has emerged as a valuable diagnostic tool in HF. This study aimed to assess a simple CMR-derived model to estimate pulmonary capillary wedge pressure (PCWP) in a cohort of patients with suspected or proven heart failure and to investigate its performance in risk-stratifying patients.
View Article and Find Full Text PDFCommercial human MR scanners are optimised for proton imaging, containing sophisticated prescan algorithms with setting parameters such as RF transmit gain and power. These are not optimal for X-nuclear application and are challenging to apply to hyperpolarised experiments, where the non-renewable magnetisation signal changes during the experiment. We hypothesised that, despite the complex and inherently nonlinear electrodynamic physics underlying coil loading and spatial variation, simple linear regression would be sufficient to accurately predict X-nuclear transmit gain based on concomitantly acquired data from the proton body coil.
View Article and Find Full Text PDFBackground: Hyperpolarised 129-xenon (Xe) magnetic resonance imaging (MRI) shows promise in monitoring the progression of idiopathic pulmonary fibrosis (IPF) due to the lack of ionising radiation and the ability to quantify functional impairment. Diffusion-weighted (DW)-MRI with hyperpolarised gases can provide information about lung microstructure. The aims were to compare Xe DW-MRI measurements with pulmonary function tests (PFTs), and to assess whether they can detect early signs of disease progression in patients with newly diagnosed IPF.
View Article and Find Full Text PDFThe respiratory consequences of acute COVID-19 infection and related symptoms tend to resolve 4 weeks post-infection. However, for some patients, new, recurrent, or persisting symptoms remain beyond the acute phase and persist for months, post-infection. The symptoms that remain have been referred to as long-COVID.
View Article and Find Full Text PDFPurpose: The underlying functional and microstructural lung disease in neonates who are born preterm (bronchopulmonary dysplasia, BPD) remains poorly characterized. Moreover, there is a lack of suitable techniques to reliably assess lung function in this population. Here, we report our preliminary experience with hyperpolarized Xe MRI in neonates with BPD.
View Article and Find Full Text PDFFunctional lung imaging modalities such as hyperpolarized gas MRI ventilation enable visualization and quantification of regional lung ventilation; however, these techniques require specialized equipment and exogenous contrast, limiting clinical adoption. Physiologically-informed techniques to map proton (H)-MRI ventilation have been proposed. These approaches have demonstrated moderate correlation with hyperpolarized gas MRI.
View Article and Find Full Text PDFBackground: Cardiac magnetic resonance (CMR) is the gold standard technique to assess biventricular volumes and function, and is increasingly being considered as an end-point in clinical studies. Currently, with the exception of right ventricular (RV) stroke volume and RV end-diastolic volume, there is only limited data on minimally important differences (MIDs) reported for CMR metrics. Our study aimed to identify MIDs for CMR metrics based on US Food and Drug Administration recommendations for a clinical outcome measure that should reflect how a patient "feels, functions or survives".
View Article and Find Full Text PDFBackground: Personalised airway clearance techniques are commonly recommended to augment mucus clearance in chronic suppurative lung diseases. It is unclear what current literature tells us about how airway clearance regimens should be personalised. This scoping review explores current research on airway clearance technique in chronic suppurative lung diseases, to establish the extent and type of guidance in this area, identify knowledge gaps and determine the factors which physiotherapists should consider when personalising airway clearance regimens.
View Article and Find Full Text PDFIntroduction: Severe pulmonary hypertension (mean pulmonary artery pressure ≥35 mmHg) in chronic lung disease (PH-CLD) is associated with high mortality and morbidity. Data suggesting potential response to vasodilator therapy in patients with PH-CLD is emerging. The current diagnostic strategy utilises transthoracic Echocardiography (TTE), which can be technically challenging in some patients with advanced CLD.
View Article and Find Full Text PDFThe NOVEL observational longiTudinal studY (NOVELTY; ClinicalTrials.gov identifier NCT02760329) is a global, prospective, observational study of ∼12 000 patients with a diagnosis of asthma and/or COPD. Here, we describe the design of the Advanced Diagnostic Profiling (ADPro) substudy of NOVELTY being conducted in a subset of ∼180 patients recruited from two primary care sites in York, UK.
View Article and Find Full Text PDFBackground: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear.
Research Question: Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using H and Xe MRI between 6 and 52 weeks following hospitalization?
Study Design And Methods: Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary H and Xe MRI protocol at 6, 12, 25, and 51 weeks following hospital admission in a prospective cohort study between November 2020 and February 2022.