Purpose: Telisotuzumab vedotin (Teliso-V) is a c-Met-directed antibody-drug conjugate with a monomethyl auristatin E cytotoxic payload. The phase II LUMINOSITY trial (ClinicalTrials.gov identifier: NCT03539536) aimed to identify the optimal c-Met protein-overexpressing non-small cell lung cancer (NSCLC) population for treatment with Teliso-V (stage I) and expand the selected group for efficacy evaluation (stage II).
View Article and Find Full Text PDFEur J Cancer
April 2021
Background: In the EORTC 1410/INTELLANCE 2 randomised, phase II study (NCT02343406), with the antibody-drug conjugate depatuxizumab mafodotin (Depatux-M, ABT-414) in patients with recurrent EGFR-amplified glioblastoma, the primary end-point (overall survival) was not met, and the drug had ocular dose-limiting toxicity. This study reports results from the prespecified health-related quality of life (HRQoL) and neurological deterioration-free survival (NDFS) exploratory analysis.
Patients And Methods: Patients (n = 260) were randomised 1:1:1 to receive either Depatux-M 1.
Background: The randomized phase II INTELLANCE-2/EORTC_1410 trial on EGFR-amplified recurrent glioblastomas showed a trend towards improved overall survival when patients were treated with depatux-m plus temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research on material derived from this clinical trial to identify patients that benefit from this treatment.
Methods: Targeted DNA-sequencing and whole transcriptome analysis was performed on clinical trial samples.
Background: Depatuxizumab mafodotin (Depatux-M) is a tumor-specific antibody-drug conjugate consisting of an antibody (ABT-806) directed against activated epidermal growth factor receptor (EGFR) and the toxin monomethylauristatin-F. We investigated Depatux-M in combination with temozolomide or as a single agent in a randomized controlled phase II trial in recurrent EGFR amplified glioblastoma.
Methods: Eligible were patients with centrally confirmed EGFR amplified glioblastoma at first recurrence after chemo-irradiation with temozolomide.
Purpose: Epidermal growth factor receptor (EGFR) amplification has been reported to occur in ~ 50% of glioblastomas (GBMs). We are conducting several global studies that require central testing for EGFR amplification during screening, representing an opportunity to confirm the frequency of amplification in GBM in a large cohort and to evaluate whether EGFR amplification differs by region of the world.
Methods: EGFR amplification was measured by fluorescence in situ hybridization during screening for therapeutic trials of an EGFR antibody-drug conjugate: two Phase 2/3 global trials (INTELLANCE-1, INTELLANCE-2), and a Japanese Phase 1/2 trial (INTELLANCE-J).
Background: Precision medicine trials targeting the epidermal growth factor receptor (EGFR) in glioblastoma patients require selection for EGFR-amplified tumors. However, there is currently no gold standard in determining the amplification status of EGFR or variant III (EGFRvIII) expression. Here, we aimed to determine which technique and which cutoffs are suitable to determine EGFR amplification status.
View Article and Find Full Text PDF