Publications by authors named "Jim I Prosser"

In the United Kingdom, landfills are the primary anthropogenic source of methane emissions. Methanotrophic bacteria present in landfill biocovers can significantly reduce methane emissions via their capacity to oxidize up to 100% of the methane produced. Several biotic and abiotic parameters regulate methane oxidation in soil, such as oxygen, moisture, methane concentration and temperature.

View Article and Find Full Text PDF

Soil microbial communities play an important role in nutrient cycling and nutrient availability, especially in unimproved soils. In grazed pastures, sheep urine causes local changes in nutrient concentration which may be a source of heterogeneity in microbial community structure. In the present study, we investigated the effects of synthetic urine on soil microbial community structure, using physiological (community level physiological profiling, CLPP), biochemical (phospholipid fatty acid analysis, PLFA) and molecular (denaturing gradient gel electrophoresis, DGGE) fingerprinting methods.

View Article and Find Full Text PDF

Interactions between plants and microorganisms in the rhizosphere are complex and varied. They include the general transfer of nutrients and specific interactions mediated by the release of signalling molecules from plant roots. Until recently, understanding the nature of these interactions was limited by a reliance on traditional, cultivation-based techniques.

View Article and Find Full Text PDF

Rhizosphere microorganisms play an important role in soil carbon flow, through turnover of root exudates, but there is little information on which organisms are actively involved or on the influence of environmental conditions on active communities. In this study, a 13CO2 pulse labelling field experiment was performed in an upland grassland soil, followed by RNA-stable isotope probing (SIP) analysis, to determine the effect of liming on the structure of the rhizosphere microbial community metabolizing root exudates. The lower limit of detection for SIP was determined in soil samples inoculated with a range of concentrations of 13C-labelled Pseudomonas fluorescens and was found to lie between 10(5) and 10(6) cells per gram of soil.

View Article and Find Full Text PDF

The influence of liming on rhizosphere microbial biomass C and incorporation of root exudates was studied in the field by in situ pulse labelling of temperate grassland vegetation with (13)CO(2) for a 3-day period. In plots that had been limed (CaCO(3) amended) annually for 3 years, incorporation into shoots and roots was, respectively, greater and lower than in unlimed plots. Analysis of chloroform-labile C demonstrated lower levels of (13)C incorporation into microbial biomass in limed soils compared to unlimed soils.

View Article and Find Full Text PDF

Abstract Quantitative models of bacterial conjugation are useful tools in environmental risk assessment and in studies of the ecology and evolution of bacterial communities. We constructed a mathematical model for gene transfer between bacteria growing on a solid surface. The model considers that donor and recipient cells will form separate colonies, which grow exponentially until nutrient exhaustion.

View Article and Find Full Text PDF

The potential for natural attenuation of hydrocarbons in oily drill cuttings from the seabed beneath a North Sea oil platform was investigated. The study focused on the anaerobic degradation of n-hexadecane, n-octacosane and naphthalene using additions of 14C-labelled analogues to drill cuttings samples and was conducted under realistic seabed conditions (except pressure) over an 11-month period. No mineralisation of naphthalene was detected over this time period and mineralisation of octacosane represented only 0.

View Article and Find Full Text PDF