Publications by authors named "Jim Hughes"

Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis describe a collection of liver conditions characterized by the accumulation of liver fat. Despite biopsy being the reference standard for determining the severity of disease, non-invasive measures such as magnetic resonance imaging proton density fat fraction (MRI-PDFF) and FibroScan® controlled attenuation parameter (CAP™) can be used to understand longitudinal changes in steatosis. The aim of this work was to describe the exposure-response relationship of ervogastat with or without clesacostat on steatosis, through population pharmacokinetic/pharmacodynamic (PK/PD) modeling of both liver fat measurements simultaneously.

View Article and Find Full Text PDF
Article Synopsis
  • Zavegepant (ZAVZPRET™) is a selective medication for treating acute migraines in adults, targeting specific receptors related to migraine pathways.
  • A comprehensive analysis of its pharmacokinetics determined how zavegepant is absorbed, distributed, and eliminated from the body, utilizing data from multiple clinical trials.
  • The findings revealed that zavegepant has low bioavailability rates when taken intranasally (5.1%) or orally (0.65%), with factors like age and sex not significantly affecting its pharmacokinetics, but certain conditions (like moderate liver impairment) could impact its clearance.
View Article and Find Full Text PDF
Article Synopsis
  • Neurocristopathies like CHARGE syndrome are linked to abnormal development of neural crest cells, mainly due to genetic mutations in the CHD7 gene, which is crucial for chromatin remodeling.
  • Researchers used epigenomic profiling of neural crest cells in chick and human models to identify enhancers that control the expression of CHD7.
  • The study established connections between transcription factors and enhancers specific to neural crest cells, highlighting the gene's role in a broader regulatory network and providing insights for better understanding CHARGE syndrome cases.
View Article and Find Full Text PDF
Article Synopsis
  • Oncogenes can become activated through mechanisms like enhancer hijacking and mutations that generate new enhancers or promoters, helping researchers understand variations in noncoding cancer genomes.
  • A new mechanism is identified where the loss of an intronic element in the FTO gene causes abnormal expression of the IRX3 oncogene in T cell acute lymphoblastic leukemia (T-ALL).
  • The study suggests that 'promoter tethering' helps keep oncogenes inactive by linking them to non-functioning parts of the genome, which may act as a safeguard against tumor development.
View Article and Find Full Text PDF

Knowledge of locations and activities of -regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project.

View Article and Find Full Text PDF
Article Synopsis
  • - Zavegepant is a new nasal spray medication approved in the U.S. for acute migraine treatment in adults, available in a 10 mg dose, effective for migraines with or without aura.
  • - The cardiovascular safety of zavegepant was examined through two studies (single and multiple ascending doses) involving a total of 144 healthy participants, focusing on its effects on ECG parameters like heart rate and QT interval.
  • - Results indicated that zavegepant does not significantly affect ECG parameters or cause meaningful QT interval prolongation, even at doses up to four times the recommended amount.
View Article and Find Full Text PDF

Brepocitinib is an oral selective dual TYK2/JAK1 inhibitor and based on its cytokine inhibition profile is expected to provide therapeutic benefit in the treatment of plaque psoriasis. Efficacy data from a completed Phase 2a study in patients with moderate-to-severe plaque psoriasis were utilized to develop a population exposure-response model that can be employed to inform dose selection decisions for further clinical development. A modeling approach that employs the zero-inflated beta distribution was used to account for the bounded nature and distributional characteristics of the Psoriasis Area and Severity Index (PASI) score data.

View Article and Find Full Text PDF
Article Synopsis
  • Whole genome sequencing (WGS) is being increasingly used to diagnose rare diseases, but traditional methods often have low diagnostic yields, typically 25-30%.
  • In a study involving 122 rare disease patients and their relatives, a comprehensive bioinformatics approach led to a diagnostic yield of 35%, with 39% solved when including novel gene candidates.
  • The study also identified several novel genes, expanded the phenotypic understanding of existing conditions, and resulted in critical changes to clinical diagnoses and treatments for some patients.
View Article and Find Full Text PDF

Assay for transposase-accessible chromatin (ATAC) and chromatin immunoprecipitation (ChIP), coupled with next-generation sequencing (NGS), have revolutionized the study of gene regulation. A lack of standardization in the analysis of the highly dimensional datasets generated by these techniques has made reproducibility difficult to achieve, leading to discrepancies in the published, processed data. Part of this problem is due to the diverse range of bioinformatic tools available for the analysis of these types of data.

View Article and Find Full Text PDF

Generation of mature cells from progenitors requires tight coupling of differentiation and metabolism. During erythropoiesis, erythroblasts are required to massively upregulate globin synthesis then clear extraneous material and enucleate to produce erythrocytes. has remained in synteny with the α-globin genes for >500 million years, and harbours the majority of the α-globin enhancers.

View Article and Find Full Text PDF

Resolving causal genes for type 2 diabetes at loci implicated by genome-wide association studies (GWAS) requires integrating functional genomic data from relevant cell types. Chromatin features in endocrine cells of the pancreatic islet are particularly informative and recent studies leveraging chromosome conformation capture (3C) with Hi-C based methods have elucidated regulatory mechanisms in human islets. However, these genome-wide approaches are less sensitive and afford lower resolution than methods that target specific loci.

View Article and Find Full Text PDF

Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout.

View Article and Find Full Text PDF

Haemoglobin E (HbE) β-thalassaemia causes approximately 50% of all severe thalassaemia worldwide; equating to around 30,000 births per year. HbE β-thalassaemia is due to a point mutation in codon 26 of the human HBB gene on one allele (GAG; glutamatic acid → AAG; lysine, E26K), and any mutation causing severe β-thalassaemia on the other. When inherited together in compound heterozygosity these mutations can cause a severe thalassaemic phenotype.

View Article and Find Full Text PDF

Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project.

View Article and Find Full Text PDF

The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity.

View Article and Find Full Text PDF

Reallocations of time between daily activities such as sleep, sedentary behavior and physical activity are differentially associated with markers of physical, mental and social health. An individual's most desirable allocation of time may differ depending on which outcomes they value most, with these outcomes potentially competing with each other for reallocations. We aimed to develop an interactive app that translates how self-selected time reallocations are associated with multiple health measures.

View Article and Find Full Text PDF

Brepocitinib is a tyrosine kinase 2 and Janus kinase 1 inhibitor in development for treatment of inflammatory autoimmune diseases. This analysis aimed to add to the pharmacokinetic knowledge of the medication, through development of a population pharmacokinetic model and identification of factors that affect drug disposition. Plasma samples from 5 clinical trials were collated, composed of healthy volunteers, patients with psoriasis and patients with alopecia areata taking oral brepocitinib.

View Article and Find Full Text PDF

Tri-C is a chromosome conformation capture (3C) approach that can efficiently identify multiway chromatin interactions with viewpoints of interest. As opposed to pair-wise interactions identified in methods such as Hi-C, 4C, and Capture-C, the detection of multiway interactions allows researchers to investigate how multiple cis-regulatory elements interact together in higher-order structures in single nuclei and address questions regarding structural cooperation between these elements. Here, we describe the procedure for designing and performing a Tri-C experiment.

View Article and Find Full Text PDF

Motivation: Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay's coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height.

View Article and Find Full Text PDF

The chromatin remodeller ATRX interacts with the histone chaperone DAXX to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats, many of which are putative G-quadruplex forming sequences (PQS).

View Article and Find Full Text PDF

Central nervous system-expressed long non-coding RNAs (lncRNAs) are often located in the genome close to protein coding genes involved in transcriptional control. Such lncRNA-protein coding gene pairs are frequently temporally and spatially co-expressed in the nervous system and are predicted to act together to regulate neuronal development and function. Although some of these lncRNAs also bind and modulate the activity of the encoded transcription factors, the regulatory mechanisms controlling co-expression of neighbouring lncRNA-protein coding genes remain unclear.

View Article and Find Full Text PDF

The successful development and ongoing functioning of complex organisms depend on the faithful execution of the genetic code. A critical step in this process is the correct spatial and temporal expression of genes. The highly orchestrated transcription of genes is controlled primarily by regulatory elements: promoters, enhancers, and insulators.

View Article and Find Full Text PDF

The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures.

View Article and Find Full Text PDF