Coating thermal noise is one of the dominant noise sources in current gravitational wave detectors and ultimately limits their ability to observe weaker or more distant astronomical sources. This Letter presents investigations of TiO_{2} mixed with SiO_{2} (TiO_{2}:SiO_{2}) as a coating material. We find that, after heat treatment for 100 h at 850 °C, thermal noise of a highly reflective coating comprising of TiO_{2}:SiO_{2} and SiO_{2} reduces to 76% of the current levels in the Advanced LIGO and Advanced Virgo detectors-with potential for reaching 45%, if we assume the mechanical loss of state-of-the-art SiO_{2} layers.
View Article and Find Full Text PDFThermal noise associated with the mechanical loss of current highly reflective mirror coatings is a critical limit to the sensitivity of gravitational-wave detectors. Several alternative coating materials show potential for reducing thermal noise, but cannot be used due to their high optical absorption. Multimaterial coatings have been proposed to enable the use of such materials to reduce thermal noise while minimizing their impact on the total absorption of the mirror coating.
View Article and Find Full Text PDFPlanned cryogenic gravitational-wave detectors will require improved coatings with a strain thermal noise reduced by a factor of 25 compared to Advanced LIGO. We present investigations of HfO_{2} doped with SiO_{2} as a new coating material for future detectors. Our measurements show an extinction coefficient of k=6×10^{-6} and a mechanical loss of ϕ=3.
View Article and Find Full Text PDFSignificant progress has been made in recent years on the development of gravitational-wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational-wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free spacecraft.
View Article and Find Full Text PDFAfter 35 years of experimental research, we are rapidly approaching the point at which gravitational waves (GWs) from astrophysical sources may be directly detected by the long-baseline detectors LIGO (USA), GEO 600 (Germany/UK), VIRGO (Italy/France) and TAMA 300 (Japan), which are now in or coming into operation.A promising source of GWs is the coalescence of compact binary systems, events which are now believed to be the origin of short gamma-ray bursts (GRBs). In this paper, a brief review of the state of the art in detector development and exploitation will be given, with particular relevance to a search for signals associated with GRBs, and plans for the future will be discussed.
View Article and Find Full Text PDFGravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21).
View Article and Find Full Text PDFThe formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object, M17, is disputed.
View Article and Find Full Text PDFThe automatic alignment system for the two suspended, triangular mode-cleaner cavities of the gravitational wave detector GEO 600 has been in continuous operation since the spring of 2001. A total of 20 angular degrees of freedom are controlled by feedback loops with almost no manual alignment having been required since installation. Error signals for the eight most important degrees of freedom are obtained with the differential wave-front sensing technique.
View Article and Find Full Text PDFSignificant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space.
View Article and Find Full Text PDF