Publications by authors named "Jim C Spain"

Unlabelled: Prediction and process monitoring during natural attenuation, bioremediation, and biotreatment require effective strategies for detection and enumeration of the responsible bacteria. The use of 2,4-dinitroanisole (DNAN) as a component of insensitive munitions leads to environmental contamination of firing ranges and manufacturing waste streams. Nocardioides sp.

View Article and Find Full Text PDF

1-Naphthylamine (1NA), which is harmful to human and aquatic animals, has been used widely in the manufacturing of dyes, pesticides, and rubber antioxidants. Nevertheless, little is known about its environmental behavior and no bacteria have been reported to use it as the growth substrate. Herein, we describe a pathway for 1NA degradation in the isolate sp.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores multi-element compound-specific isotope analysis (CSIA) to assess the biodegradation of 2,3-dichloroaniline (2,3-DCA), a significant industrial chemical, during controlled laboratory experiments.* -
  • Findings reveal negligible carbon and hydrogen isotope fractionation but notable inverse nitrogen isotope fractionation during the aerobic biodegradation, suggesting that the reaction’s initial enzymatic step might limit the process.* -
  • The research indicates that using nitrogen isotope signatures can help estimate biodegradation levels in contaminated sites, with potential rates reaching 80-90%, showcasing multi-element CSIA as a promising method for studying environmental chemical transformations.*
View Article and Find Full Text PDF

Nitroanisoles are used widely as synthetic intermediates and explosives. Although bacteria have been reported to degrade 4-nitroanisole (4NA) under aerobic conditions, the key enzymes and the catalytic mechanism have remained elusive. Rhodococcus sp.

View Article and Find Full Text PDF

4-Nitroaniline (4NA), the starting material for the first synthesized azo dye, is a toxic compound found in industrial wastewaters. Several bacterial strains capable of 4NA biodegradation were previously reported but the details of the catabolic pathway were not established. To search for novel metabolic diversity, we isolated a Rhodococcus sp.

View Article and Find Full Text PDF

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) enter the environment from natural sources and anthropogenic activities. To date, microorganisms able to mineralize nitro-PAHs have not been reported. Here, sp.

View Article and Find Full Text PDF

Insensitive munitions compounds (IMCs), such as 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), are replacing conventional explosives in munitions formulations. Manufacture and use of IMCs generate waste streams in manufacturing plants and load/assemble/pack facilities. There is a lack of practical experience in executing biodegradation strategies to treat IMCs waste streams.

View Article and Find Full Text PDF

Insensitive munitions compounds (IMCs) are emerging nitroaromatic contaminants developed by the military as safer-to-handle alternatives to conventional explosives. Biotransformation of nitroaromatics via microbial respiration has only been reported for a limited number of substrates. Important soil microorganisms can respire natural organic matter (NOM) by reducing its quinone moieties to hydroquinones.

View Article and Find Full Text PDF

Halonitrobenzenes are toxic chemical intermediates used widely for industrial synthesis of dyes and pesticides. Bacteria able to degrade 2- and 4-chloronitrobenzene have been isolated and characterized; in contrast, no natural isolate has been reported to degrade -halonitrobenzenes. In this study, sp.

View Article and Find Full Text PDF

Alkanes are ubiquitous in marine ecosystems and originate from diverse sources ranging from natural oil seeps to anthropogenic inputs and biogenic production by cyanobacteria. Enzymes that degrade cyanobacterial alkanes (typically C15-C17 compounds) such as the alkane monooxygenase (AlkB) are widespread, but it remains unclear whether or not AlkB variants exist that specialize in degradation of crude oil from natural or accidental spills, a much more complex mixture of long-chain hydrocarbons. In the present study, large-scale analysis of available metagenomic and genomic data from the Gulf of Mexico (GoM) oil spill revealed a novel, divergent AlkB clade recovered from genomes with no cultured representatives that was dramatically increased in abundance in crude-oil impacted ecosystems.

View Article and Find Full Text PDF

sp. strain JS3051 utilizes 2,3-dichloronitrobenzene (23DCNB), a toxic anthropogenic compound, as the sole carbon, nitrogen, and energy source for growth, but the metabolic pathway and its origins are unknown. Here, we establish that a gene cluster (), encoding a Nag-like dioxygenase, is responsible for the initial oxidation of the 23DCNB molecule.

View Article and Find Full Text PDF

4-Nitrophenol, a priority pollutant, is degraded by Gram-positive and Gram-negative bacteria via 1,2,4-benzenetriol (BT) and hydroquinone (HQ), respectively. All enzymes involved in the two pathways have been functionally identified. So far, all Gram-negative 4-nitrophenol utilizers are from the genera Pseudomonas and But it remains a mystery why , an apparently superfluous BT 1,2-dioxygenase-encoding gene, always coexists in the catabolic cluster () encoding 4-nitrophenol degradation via HQ.

View Article and Find Full Text PDF

The nitroheterocyclic 3-nitro-1,2,4-triazol-5-one (NTO) is an ingredient of insensitive explosives increasingly used by the military, becoming an emergent environmental pollutant. Cometabolic biotransformation of NTO occurs in mixed microbial cultures in soils and sludges with excess electron-donating substrates. Herein, we present the unusual energy-yielding metabolic process of NTO respiration, in which the NTO reduction to 3-amino-1,2,4-triazol-5-one (ATO) is linked to the anoxic acetate oxidation to CO by a culture enriched from municipal anaerobic digester sludge.

View Article and Find Full Text PDF

The chemical synthesis intermediate 3,4-dichloronitrobenzene (3,4-DCNB) is an environmental pollutant. Diaphorobacter sp. strain JS3050 utilizes 3,4-DCNB as a sole source of carbon, nitrogen and energy.

View Article and Find Full Text PDF

Crude oil buried in intertidal sands may be exposed to alternating oxic and anoxic conditions but the effect of this tidally induced biogeochemical oscillation remains poorly understood, limiting the effectiveness of remediation and managing efforts after oil spills. Here, we used a combination of metatranscriptomics and genome-resolved metagenomics to study microbial activities in oil-contaminated sediments during oxic-anoxic cycles in laboratory chambers that closely emulated in situ conditions. Approximately 5-fold higher reductions in the total petroleum hydrocarbons were observed in the oxic as compared to the anoxic phases with a relatively constant ratio between aerobic and anaerobic oil decomposition rates even after prolonged anoxic conditions.

View Article and Find Full Text PDF

To what extent multi-omic techniques could reflect in situ microbial process rates remains unclear, especially for highly diverse habitats like soils. Here, we performed microcosm incubations using sandy soil from an agricultural site in Midwest USA. Microcosms amended with isotopically labeled ammonium and urea to simulate a fertilization event showed nitrification (up to 4.

View Article and Find Full Text PDF

3-Nitro-1,2,4-triazol-5-one (NTO) is one of the main ingredients of many insensitive munitions, which are being used as replacements for conventional explosives. As its use becomes widespread, more research is needed to assess its environmental fate. Previous studies have shown that NTO is biologically reduced to 3-amino-1,2,4-triazol-5-one (ATO).

View Article and Find Full Text PDF

Dichloronitrobenzenes (DCNB) are intermediates in the production of dichloroanilines, which are key feedstocks for synthesis of diuron and other herbicides. Although DCNB is a major contaminant at certain chemical manufacturing sites, aerobic DCNB biodegradation is poorly understood and such sites have not been candidates for bioremediation. When a bench-scale aerobic fluidized- bed bioreactor was inoculated with samples from a DCNB contaminated site in Brazil 2,3-DCNB, 3,4-DCNB, 1,2-dichlorobenzene (o-DCB), and chlorobenzene (CB) were biodegraded simultaneously.

View Article and Find Full Text PDF

Modeling crude-oil biodegradation in sediments remains a challenge due in part to the lack of appropriate model organisms. Here we report the metagenome-guided isolation of a novel organism that represents a phylogenetically narrow (>97% 16S rRNA gene identity) group of previously uncharacterized, crude-oil degraders. Analysis of available sequence data showed that these organisms are highly abundant in oiled sediments of coastal marine ecosystems across the world, often comprising ~30% of the total community, and virtually absent in pristine sediments or seawater.

View Article and Find Full Text PDF

Many plants produce allelopathic chemicals, such as stilbenes, to inhibit pathogenic fungi. The degradation of allelopathic compounds by bacteria associated with the plants would limit their effectiveness, but little is known about the extent of biodegradation or the bacteria involved. Screening of tissues and rhizosphere of peanut () plants revealed substantial enrichment of bacteria able to grow on resveratrol and pterostilbene, the most common stilbenes produced by the plants.

View Article and Find Full Text PDF

The NIH shift is a chemical rearrangement in which a substituent on an aromatic ring undergoes an intramolecular migration, primarily during an enzymatic hydroxylation reaction. The molecular mechanism for the NIH shift of a carboxyl group has remained a mystery for 40 years. Here, we elucidate the molecular mechanism of the reaction in the conversion of para-hydroxybenzoate (PHB) to gentisate (GA, 2, 5-dihydroxybenzoate).

View Article and Find Full Text PDF

Resveratrol is among the best-known secondary plant metabolites because of its antioxidant, anti-inflammatory, and anticancer properties. It also is an important allelopathic chemical widely credited with the protection of plants from pathogens. The ecological role of resveratrol in natural habitats is difficult to establish rigorously, because it does not seem to accumulate outside plant tissue.

View Article and Find Full Text PDF

Compound specific isotope analysis (CSIA) is widely used to monitor contaminant remediation in groundwater. CSIA-based approaches that use enrichment (ε) values to assess degradative processes rely on the assumption that the contaminant being investigated will have an ε value that is constant and specific to a catalytic pathway of a microorganism. Distinct ε values have been reported for aerobic degradation of cis-dichloroethene (cDCE), which has led to a number of proposed degradation mechanisms; however, cytochrome P450 catalyzed oxidation is the only biochemical mechanism that has been established in Polaromonas sp.

View Article and Find Full Text PDF
Article Synopsis
  • - Nitramines, like nitroglycine (NNG), are harmful contaminants from explosives that affect soil and groundwater, posing risks to ecosystems and human health.
  • - Researchers isolated a soil bacterium, sp. strain JS1663, capable of degrading NNG, identifying a key enzyme involved in this process which has a unique domain previously not associated with denitration.
  • - The findings on NNG biodegradation could lead to advancements in breaking down other nitramine explosives, aiding environmental remediation efforts.
View Article and Find Full Text PDF

A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (<0.1%), the so-called "rare biosphere." How often, and via what mechanisms, e.

View Article and Find Full Text PDF