Publications by authors named "Jim Boelrijk"

Method development in comprehensive two-dimensional liquid chromatography (LC×LC) is a challenging process. The interdependencies between the two dimensions and the possibility of incorporating complex gradient profiles, such as multi-segmented gradients or shifting gradients, make trial-and-error method development time-consuming and highly dependent on user experience. Retention modeling and Bayesian optimization (BO) have been proposed as solutions to mitigate these issues.

View Article and Find Full Text PDF

Method development in comprehensive two-dimensional liquid chromatography (LC × LC) is a complicated endeavor. The dependency between the two dimensions and the possibility of incorporating complex gradient profiles, such as multi-segmented gradients or shifting gradients, renders method development by "trial-and-error" time-consuming and highly dependent on user experience. In this work, an open-source algorithm for the automated and interpretive method development of complex gradients in LC × LC-mass spectrometry (MS) was developed.

View Article and Find Full Text PDF

Non-target analysis combined with liquid chromatography high resolution mass spectrometry is considered one of the most comprehensive strategies for the detection and identification of known and unknown chemicals in complex samples. However, many compounds remain unidentified due to data complexity and limited number structures in chemical databases. In this work, we have developed and validated a novel machine learning algorithm to predict the retention index (r[Formula: see text]) values for structurally (un)known chemicals based on their measured fragmentation pattern.

View Article and Find Full Text PDF

Contemporary complex samples require sophisticated methods for full analysis. This work describes the development of a Bayesian optimization algorithm for automated and unsupervised development of gradient programs. The algorithm was tailored to LC using a Gaussian process model with a novel covariance kernel.

View Article and Find Full Text PDF

The majority of liquid chromatography (LC) methods are still developed in a conventional manner, that is, by analysts who rely on their knowledge and experience to make method development decisions. In this work, a novel, open-source algorithm was developed for automated and interpretive method development of LC(-mass spectrometry) separations ("AutoLC"). A closed-loop workflow was constructed that interacted directly with the LC system and ran unsupervised in an automated fashion.

View Article and Find Full Text PDF

Comprehensive two-dimensional liquid chromatography (LC×LC), is a powerful, emerging separation technique in analytical chemistry. However, as many instrumental parameters need to be tuned, the technique is troubled by lengthy method development. To speed up this process, we applied a Bayesian optimization algorithm.

View Article and Find Full Text PDF