Publications by authors named "Jilt Sietsma"

This study proposes a new approach to determine phenomenological or physical relations between microstructure features and the mechanical behavior of metals bridging advanced statistics and materials science in a study of the effect of hard precipitates on the hardening of metal alloys. Synthetic microstructures were created using multi-level Voronoi diagrams in order to control microstructure variability and then were used as samples for virtual tensile tests in a full-field crystal plasticity solver. A data-driven model based on Functional Principal Component Analysis (FPCA) was confronted with the classical Voce law for the description of uniaxial tensile curves of synthetic AISI 420 steel microstructures consisting of a ferritic matrix and increasing volume fractions of M23C6 carbides.

View Article and Find Full Text PDF

Investigating the main determinants of the mechanical performance of metals is not a simple task. Already known physically inspired qualitative relations between 2D microstructure characteristics and 3D mechanical properties can act as the starting point of the investigation. Isotonic regression allows to take into account ordering relations and leads to more efficient and accurate results when the underlying assumptions actually hold.

View Article and Find Full Text PDF

The dissolution of rare earth oxides in molten fluorides is a critical step in the preparation of the corresponding rare earth metals by oxide-fluoride electrolysis. However, quantitatively understanding the nature of dissolution, especially in the case of molten salts, is usually difficult to be achieved by characterization. In this paper, the dissolution behavior of NdO particles in molten fluorides was studied via observation with confocal scanning laser microscopy.

View Article and Find Full Text PDF

A fast three-dimensional phase transformation model is formulated for the transformation from ferrite to austenite in low-carbon steel. The model addresses the parent microstructure, the nucleation behaviour of the new phase and the growth of the new phase. During the growth, the interface velocity of the ferrite grains is calculated using a mixed-mode growth model.

View Article and Find Full Text PDF