The regulatory mechanism between N6-methyladenosine (mA) RNA methylation and histone modification in endometrial receptivity remains poorly understood. In this study, we depict that RIF induced mA and Mettl3 level restrain, affecting H3K27me3 modification and chromatin accessibility. We show that Mettl3 deletion in the endometrium alters mRNA mA methylation via Eed interaction.
View Article and Find Full Text PDFMetabolism is a fundamental characteristic of life. In 2010, we discovered that the metabolic enzyme CTP synthase (CTPS) can assemble a snake like structure inside cells, which we call the cytoophidium. Including CTPS, an increasing number of metabolic enzymes have been found to form cytoophidia in cells.
View Article and Find Full Text PDFRibosomal proteins constitute the principal components of ribosomes, and their functions span a wide spectrum. Recent investigations have unveiled their involvement in oocyte and embryo development, playing a pivotal role in reproductive development. Numerous pieces of evidence indicate that ribosomal proteins participate in the regulation of various cellular activities, including nucleolar stress, oxidative stress, cell proliferation and autophagy.
View Article and Find Full Text PDFOn June 30, 2020, Professor Joseph Grafton Gall announced his retirement at 92. On August 13, 2020, Joe's former trainees and colleagues held a retirement celebration online to celebrate Joe's "Remarkable Career with Astonishing Discoveries", covering Joe's nearly 70 years of education and research. As a representative of Joe's trainees in the 2000s, I gave a speech titled "Seven Theorems of Joe".
View Article and Find Full Text PDFThe de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by the enzyme CTP synthase (CTPS), which is known to form cytoophidia across all three domains of life. In this study, we use the budding yeast and the fission yeast as model organisms to compare cytoophidium assembly under external environmental and intracellular CTPS alterations. We observe that under low and high temperature conditions, cytoophidia in fission yeast gradually disassemble, while cytoophidia in budding yeast remain unaffected.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
The cytoophidium, composed mainly of CTP synthase (CTPS), is a newly discovered dynamic filamentous structure in various organisms such as archaea, bacteria, and humans. These filamentous structures represent a fascinating example of intracellular compartmentation and dynamic regulation of metabolic enzymes. Currently, cytoophidia have been proven to be tightly regulated and highly dynamic, responding rapidly to developmental and metabolic cues and playing a critical role in maintaining cellular homeostasis.
View Article and Find Full Text PDFExp Cell Res
October 2024
The cytoophidium is a novel type of membraneless organelle, first observed in the ovaries of Drosophila using fluorescence microscopy. In vitro, purified Drosophila melanogaster CTPS (dmCTPS) can form metabolic filaments under the presence of either substrates or products, and their structures that have been analyzed using cryo-electron microscopy (cryo-EM). These dmCTPS filaments are considered the fundamental units of cytoophidia.
View Article and Find Full Text PDFThe final step in the de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by CTP synthase (CTPS), which can form cytoophidia in all three domains of life. Recently, we have discovered that CTPS binds to ribonucleotides (NTPs) to form filaments, and have successfully resolved the structures of Drosophila melanogaster CTPS bound with NTPs. Previous biochemical studies have shown that CTPS can bind to deoxyribonucleotides (dNTPs) to produce 2'-deoxycytidine-5'-triphosphate (dCTP).
View Article and Find Full Text PDFThe conservation of agricultural heritage systems (AHSs) has played a pivotal role in fostering the sustainable development of agriculture and safeguarding farmers' livelihoods and food security worldwide. This significance is particularly evident in the case of tea AHSs, due to the economic and nutritional value of tea products. Taking the Anxi Tieguanyin Tea Culture System (ATTCS) and Fuding White Tea Culture System (FWTCS) in Fujian Province as examples, this study uses statistical analyses and a multinomial logistic regression model to assess and compare farmer livelihood and food security at the tea AHS sites.
View Article and Find Full Text PDFThe real-time detection of intracellular biological processes by encoded sensors has broad application prospects. Here, we developed a degron-based modular reporting system, the Device of Death Operation (DODO), that can monitor various biological processes. The DODO system consists of a "reporter", an "inductor", and a "degron".
View Article and Find Full Text PDFBiochar and organic fertilizer are commonly used to maintain soil health and sustainable agroecosystems, and the alternate wet-dry management of soil moisture in dry direct-seeded paddy fields can complicate the effects of biochar and organic fertilizer on soil microhabitats. Therefore, this study used chicken manure organic fertilizer to replace some of the inorganic fertilizer and applied biochar to explore the ability of biochar and organic fertilizer to regulate the functions of the soil microhabitat in dry direct-seeded paddy fields. The coupling effect of organic fertilizer and biochar increased the diversity and richness of soil bacteria but had no significant effect on soil fungi.
View Article and Find Full Text PDFFolia Microbiol (Praha)
February 2025
Oral microorganisms are closely related to oral health, the occurrence of some oral diseases is associated with changes in the oral microbiota, and many studies have demonstrated that traditional smoking can affect the oral microbial community. However, due to the short time since the emergence of e-cigarettes, fewer studies are comparing oral microorganisms for users of e-cigarettes versus cigarettes. We collected saliva from 40 non-smokers (NS), 46 traditional cigarette smokers (TS), and 27 e-cigarette consumers (EC), aged between 18 and 35 years.
View Article and Find Full Text PDFCytidine triphosphate synthase (CTPS) plays a pivotal role in the de novo synthesis of cytidine triphosphate (CTP), a fundamental building block for RNA and DNA that is essential for life. CTPS is capable of directly binding to all four nucleotide triphosphates: adenine triphosphate, uridine triphosphate, CTP, and guanidine triphosphate. Furthermore, CTPS can form cytoophidia in vivo and metabolic filaments in vitro, undergoing regulation at multiple levels.
View Article and Find Full Text PDFGarnet-based electrolytes with high ionic conductivity and excellent stability against lithium metal anodes are promising for commercial applications in solid-state lithium batteries (SSLBs). However, the further development of SSLBs is inhibited by issues such as low ionic conductivity and uncontrolled lithium dendrite growth. Herein, we report the synthesis of fluorine-doped LiLaZrO (LLZO-F0.
View Article and Find Full Text PDFNuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI.
View Article and Find Full Text PDFIn plants, the rapid accumulation of proline is a common response to combat abiotic stress. Delta-1-pyrroline-5-carboxylate synthase (P5CS) is a rate-limiting enzyme in proline synthesis, catalysing the initial two-step conversion from glutamate to proline. Here we determine the first structure of plant P5CS.
View Article and Find Full Text PDFThe cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs).
View Article and Find Full Text PDFAs an information bridge between DNA and protein, RNA regulates cellular processes and gene expression in various ways. From its synthesis to degradation, RNA is associated with a range of RNA-binding proteins. Therefore, it is necessary to develop innovative methods to study the interaction between RNA and proteins.
View Article and Find Full Text PDFCTP synthase (CTPS) catalyzes the final step of de novo synthesis of CTP. CTPS was first discovered to form filamentous structures termed cytoophidia in ovarian cells. Subsequent studies have shown that cytoophidia are widely present in cells of three life domains.
View Article and Find Full Text PDFLiquid‒liquid phase separation (LLPS) is a ubiquitous process in which proteins, RNA, and biomolecules assemble into membrane-less compartments, playing important roles in many biological functions and diseases. The current knowledge on the biophysical and biochemical principles of LLPS is largely from in vitro studies; however, the physiological environment in living cells is complex and not at equilibrium. The characteristics of intracellular dynamics and their roles in physiological LLPS remain to be resolved.
View Article and Find Full Text PDFCTP synthase (CTPS), the rate-limiting enzyme in the de novo synthesis of CTP, assembles into a filamentous structure termed the cytoophidium. The Hippo pathway regulates cell proliferation and apoptosis. The relationship of the nucleotide metabolism with the Hippo pathway is little known.
View Article and Find Full Text PDFJ Phys Chem B
February 2024
The cellular compartmentation induced by self-assembly of natural proteins has recently attracted widespread attention due to its structural-functional significance. Among them, as a highly conserved metabolic enzyme and one of the potential targets for cancers and parasitic diseases in drug development, CTP synthase (CTPS) has also been reported to self-assemble into filamentous structures termed cytoophidia. To elucidate the dynamical mechanism of cytoophidium filamentation, we utilize single-molecule fluorescence imaging to observe the real-time self-assembly dynamics of CTPS and the coordinated assembly between CTPS and its interaction partner, Δ-pyrroline-5-carboxylate synthase (P5CS).
View Article and Find Full Text PDFCytidine triphosphate synthase (CTPS) forms cytoophidia in all three domains of life. Here we focus on the function of cytoophidia in cell proliferation using as a model system. We find that converting His of CTPS into Ala leads to cytoophidium disassembly.
View Article and Find Full Text PDF