Am J Respir Cell Mol Biol
November 2024
Lymphangioleiomyomatosis (LAM) is a cystic lung disease of women resulting from mutations in tuberous sclerosis complex (TSC) genes that suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway. mTORC1 activation enhances a plethora of anabolic cellular functions, mainly the activation of mRNA translation through stimulation of ribosomal protein S6 kinase (S6K1)/ribosomal protein S6 (S6) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/eukaryotic translation initiation factor 4E (eIF4E). Rapamycin (sirolimus), an allosteric inhibitor of mTORC1, stabilises lung function in many but not all LAM patients and, upon cessation of the drug, disease progression resumes.
View Article and Find Full Text PDFThe mechanistic target of rapamycin (mTOR) and wingless-related integration site (Wnt) signal transduction networks are evolutionarily conserved mammalian growth and cellular development networks. Most cells express many of the proteins in both pathways, and this review will briefly describe only the key proteins and their intra- and extracellular crosstalk. These complex interactions will be discussed in relation to cancer development, drug resistance, and stem cell exhaustion.
View Article and Find Full Text PDFCysteinyl leukotrienes are proinflammatory mediators with a clinically established role in asthma and a human genetic and preclinical role in cardiovascular pathology. Given that cardiovascular disease has a critical inflammatory component, the aim of this work was to conduct an observational study to verify whether the use of a cysteinyl leukotriene antagonist, namely, montelukast, may protect asthmatic patients from a major cardiovascular event and, therefore, represent an innovative adjunct therapy to target an inflammatory component in cardiovascular disease. We performed an observational retrospective 3-year study on eight hundred adult asthmatic patients 18 years or older in Albania, equally distributed into two cohorts, exposed or nonexposed to montelukast usage, matched by age and gender according to information reported in the data collection.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is a rare metastatic cystic lung disease due to a mutation in a TSC tumor suppressor, resulting in hyperactive mTOR growth pathways. Sirolimus (rapamycin), an allosteric mTORC1 inhibitor, is a therapeutic option for women with LAM but it only maintains lung volume during treatment and does not provide benefit for all LAM patients. The two major mTORC1 protein synthesis pathways are via S6K/S6 or 4E-BP/eIF4E activation.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is a rare, almost exclusively female lung disease linked to inactivating mutations in tuberous sclerosis complex 2 (TSC2), a tumor suppressor gene that controls cell metabolic state and growth via regulation of the mechanistic target of rapamycin (mTORC1) signaling. mTORC1 is frequently activated in human cancers and, although the mTORC1 inhibitor rapamycin has a cytostatic effect, it is, in general, unable to elicit a robust curative effect or tumor regression. Using RNA-Seq, we identified (1) Insulin-like Growth Factor (IGF2) as one of the genes with the highest fold-change difference between human TSC2-null and TSC2-expressing angiomyolipoma cells from a patient with LAM, and (2) the mouse IGF2 homolog Igf2, as a top-ranking gene according to fold change between Tsc2-/- and Tsc2+/+ mouse embryo fibroblasts (MEFs).
View Article and Find Full Text PDFLOXL2 catalyzes the oxidative deamination of ε-amines of lysine and hydroxylysine residues within collagen and elastin, generating reactive aldehydes (allysine). Condensation with other allysines or lysines drives the formation of inter- and intramolecular cross-linkages, a process critical for the remodeling of the ECM. Dysregulation of this process can lead to fibrosis, and LOXL2 is known to be upregulated in fibrotic tissue.
View Article and Find Full Text PDFTwo series of novel LOXL2 enzyme inhibitors are described: benzylamines substituted with electron withdrawing groups at the -position and 2-substituted pyridine-4-ylmethanamines. The most potent compound, (2-chloropyridin-4-yl)methanamine (hLOXL2 IC = 126 nM), was shown to be selective for LOXL2 over LOX and three other amine oxidases (MAO-A, MAO-B, and SSAO). Compound is the first published small molecule inhibitor selective for LOXL2 over LOX.
View Article and Find Full Text PDFAutotaxin (ATX) is a secreted glycoprotein that converts lysophosphatidylcholine (LPC) to the bioactive phospholipid lysophosphatidic acid (LPA) and is the major enzyme generating circulating LPA. Inhibition of LPA signaling has profound antifibrotic effects in multiple organ systems, including lung, kidney, skin, and peritoneum. However, other LPA-generating pathways exist, and the role of ATX in localized tissue LPA production and fibrosis remains unclear and controversial.
View Article and Find Full Text PDFAutotaxin (ATX) is a 125-kD type II ectonucleotide pyrophosphatase/phosphodiesterase (ENPP2 or NPP2) originally discovered as an unknown "autocrine motility factor" in human melanoma cells. In addition to its pyrophosphatase/phosphodiesterase activities ATX has lysophospholipase D (lysoPLD) activity, catalyzing the conversion of lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). ATX is the only ENPP family member with lysoPLD activity and it produces most of the LPA in circulation.
View Article and Find Full Text PDFAutotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is a bioactive phospholipid that regulates diverse biological processes, including cell proliferation, migration, and survival/apoptosis, through the activation of a family of G protein-coupled receptors. The ATX-LPA pathway has been implicated in many pathologic conditions, including cancer, fibrosis, inflammation, cholestatic pruritus, and pain.
View Article and Find Full Text PDFThe endogenous ligands for the LT, lipoxin (LX) and oxoeicosanoid receptors are bioactive products produced by the action of the lipoxygenase family of enzymes. The LT receptors BLT1 and BLT2 , are activated by LTB4 and the CysLT1 and CysLT2 receptors are activated by the cysteinyl-LTs, whereas oxoeicosanoids exert their action through the OXE receptor. In contrast to these pro-inflammatory mediators, LXA4 transduces responses associated with the resolution of inflammation through the receptor FPR2/ALX (ALX/FPR2).
View Article and Find Full Text PDFBackground: Cysteinyl leukotriene 1 (CysLT1) receptor expression is known to be increased in the airway mucosa of patients with asthma, especially during exacerbations; however, nothing is known of its expression in COPD.
Methods: We applied immunohistochemistry and in situ hybridization to endobronchial biopsies to determine inflammatory cell CysLT1 receptor protein and mRNA expression in the following: (1) 15 nonsmoker control subjects (NSC), (2) 16 smokers with moderate to severe COPD in its stable phase (S-COPD), and (3) 15 smokers with COPD hospitalized for a severe exacerbation (SE-COPD).
Results: The total number of bronchial mucosal inflammatory cells (CD45+) and those expressing CysLT1 receptor protein were significantly greater in SE-COPD (CysLT1 receptor protein: median [range] = 139 [31-634]) as compared with S-COPD (32 [6-114]) or NSC (16 [4-66]) (P < .
Aim: To assess the pharmacokinetics, pharmacodynamics, safety and tolerability of the 5-lipoxygenase-activating protein inhibitor, GSK2190915, after oral dosing in two independent phase I studies, one in Western European and one in Japanese subjects, utilizing different formulations.
Method: Western European subjects received single (50-1000 mg) or multiple (10-450 mg) oral doses of GSK2190915 or placebo in a dose-escalating manner. Japanese subjects received three of four GSK2190915 doses (10-200 mg) plus placebo once in a four period crossover design.
The potent 5-lipoxygenase-activating protein (FLAP) inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid 11cc is described (AM803, now GSK2190915). Building upon AM103 (1) (Hutchinson et al. J.
View Article and Find Full Text PDFBackground: Allergic conjunctivitis is characterized by itchy, watery and swollen eyes which occur in response to exposure to seasonal or environmental allergens. The early phase reaction of allergic conjunctivitis is primarily mediated by mast cell degranulation while the late phase reaction is driven by Th2 cells and eosinophils. Prostaglandin D(2) (PGD(2)), released from mast cells, is present in allergic conjunctival tears and may elicit classical allergic responses via interaction with the high-affinity DP2 receptor (chemoattractant receptor-homologous molecule expressed on Th2 cells, CRTh2).
View Article and Find Full Text PDFBiphenylacetic acid (5) was identified through a library screen as an inhibitor of the prostaglandin D(2) receptor DP2 (CRTH2). Optimization for potency and pharmacokinetic properties led to a series of selective CRTH2 antagonists. Compounds demonstrated potency in a human DP2 binding assay and a human whole blood eosinophil shape change assay, as well as good oral bioavailability in rat and dog, and efficacy in a mouse model of allergic rhinitis following oral dosing.
View Article and Find Full Text PDFThe seven-transmembrane G protein-coupled receptors activated by leukotrienes are divided into two subclasses based on their ligand specificity for either leukotriene B(4) or the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)). These receptors have been designated BLT and CysLT receptors, respectively, and a subdivision into BLT(1) and BLT(2) receptors and CysLT(1) and CysLT(2) receptors has been established. However, recent findings have also indicated the existence of putative additional leukotriene receptor subtypes.
View Article and Find Full Text PDFThe prostaglandin D(2) (PGD(2)) receptor type 2 (DP2) is a G protein-coupled receptor that has been shown to be involved in a variety of allergic diseases, including allergic rhinitis, asthma, and atopic dermatitis. In this study, we describe the preclinical pharmacological and pharmacokinetic properties of the small-molecule DP2 antagonist [2'-(3-benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (AM211). We determine that AM211 has high affinity for human, mouse, rat, and guinea pig DP2 and it shows selectivity over other prostanoid receptors and enzymes.
View Article and Find Full Text PDFCompound 21 (AM432) was identified as a potent and selective antagonist of the DP(2) receptor (CRTH2). Modification of a bi-aryl core identified a series of tri-aryl antagonists of which compound 21 proved a viable clinical candidate. AM432 shows excellent potency in a human whole blood eosinophil shape change assay with prolonged incubation, a comparatively long off-rate from the DP(2) receptor, excellent pharmacokinetics in dog and in vivo activity in two mouse models of inflammatory disease after oral dosing.
View Article and Find Full Text PDFAM643 (compound 6, 3-{3-tert-butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid) was identified as a potential candidate for formulation as a topical agent for the treatment of skin disorders involving leukotriene production. Dermal application of 6 using a prototypical vehicle in a murine ear arachidonic acid model showed significant reduction in the concentrations of leukotrienes in mouse skin with concomitant reduction in ear swelling.
View Article and Find Full Text PDFWe evaluated the in vivo pharmacological properties of AM803 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxy-pyridin-3-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid, a selective five-lipoxygenase-activating protein (FLAP) inhibitor, using rat and mouse models of acute inflammation. Oral administration of AM803 (1 mg/kg) resulted in sustained inhibition of ex vivo ionophore-challenged whole blood LTB4 biosynthesis with >90% inhibition for up to 12 h and an EC50 of approximately 7 nM. When rat lungs were challenged in vivo with calcium-ionophore, AM803 inhibited LTB4 and cysteinyl leukotriene (CysLT) production with ED50s of 0.
View Article and Find Full Text PDFProstaglandin D(2) (PGD(2)) is derived from arachidonic acid and binds with high affinity to the G protein coupled receptors prostanoid DP(1) and DP(2). Interaction with DP(2) results in cell chemotaxis, eosinophil degranulation, eosinophil shape change, adhesion molecule upregulation and Th2 cytokine production. In allergic rhinitis and allergic asthma PGD(2) is released from mast cells in response to allergen challenge and may trigger symptoms such as sneezing, rhinorrhea, pruritus, mucus hypersecretion and pulmonary inflammation.
View Article and Find Full Text PDF