Domestic pigs () were first transported to Polynesia through a series of long-distance voyages ultimately linked to the Neolithic expansion of Austronesian-speaking people out of Asia. The descendants of the founding pigs belong to a rare mtDNA group referred to as the "Pacific Clade" that may have originated in peninsular or island Southeast Asia. We report the first whole genome mtDNA from domestic pigs from any of the remote islands of the Pacific.
View Article and Find Full Text PDFThe human colonization of eastern Africa's near- and offshore islands was accompanied by the translocation of several domestic, wild and commensal fauna, many of which had long-term impacts on local environments. To better understand the timing and nature of the introduction of domesticated caprines (sheep and goat) to these islands, this study applied collagen peptide fingerprinting (Zooarchaeology by Mass Spectrometry or ZooMS) to archaeological remains from eight Iron Age sites, dating between 300 and 1000 CE, in the Zanzibar, Mafia and Comoros archipelagos. Where previous zooarchaeological analyses had identified caprine remains at four of these sites, this study identified goat at seven sites and sheep at three, demonstrating that caprines were more widespread than previously known.
View Article and Find Full Text PDFChemical analyses of carbonized and absorbed organic residues from archaeological ceramic cooking vessels can provide a unique window into the culinary cultures of ancient people, resource use, and environmental effects by identifying ingredients used in ancient meals. However, it remains uncertain whether recovered organic residues represent only the final foodstuffs prepared or are the accumulation of various cooking events within the same vessel. To assess this, we cooked seven mixtures of C and C foodstuffs in unglazed pots once per week for one year, then changed recipes between pots for the final cooking events.
View Article and Find Full Text PDFDrivers of Late Quaternary megafaunal extinctions are relevant to modern conservation policy in a world of growing human population density, climate change, and faunal decline. Traditional debates tend toward global solutions, blaming either dramatic climate change or dispersals of Homo sapiens to new regions. Inherent limitations to archaeological and paleontological data sets often require reliance on scant, poorly resolved lines of evidence.
View Article and Find Full Text PDFStable carbon and oxygen isotope analysis of human and animal tooth enamel carbonate has been applied in paleodietary, paleoecological, and paleoenvironmental research from recent historical periods back to over 10 million years ago. Bulk approaches provide a representative sample for the period of enamel mineralization, while sequential samples within a tooth can track dietary and environmental changes during this period. While these methodologies have been widely applied and described in archaeology, ecology, and paleontology, there have been no explicit guidelines to aid in the selection of necessary lab equipment and to thoroughly describe detailed laboratory sampling and protocols.
View Article and Find Full Text PDFThe role of humans in shaping local ecosystems is an increasing focus of archaeological research, yet researchers often lack an appropriate means of measuring past anthropogenic effects on local food webs and nutrient cycling. Stable isotope analysis of commensal animals provides an effective proxy for local human environments because these species are closely associated with human activities without being under direct human management. Such species are thus central to nutrient flows across a range of socionatural environments and can provide insight into how they intersected and transformed over time.
View Article and Find Full Text PDFStable isotope analysis has been utilized in archaeology since the 1970s, yet standardized protocols for terminology, sampling, pretreatment evaluation, calibration, quality assurance and control, data presentation, and graphical or statistical treatment still remain lacking in archaeological applications. Here, we present recommendations and requirements for each of these in the archaeological context of: bulk stable carbon and nitrogen isotope analysis of organics; bulk stable carbon and oxygen isotope analysis of carbonates; single compound stable carbon and nitrogen isotope analysis on amino acids in collagen and keratin; and single compound stable carbon and hydrogen isotope analysis on fatty acids. The protocols are based on recommendations from the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) as well as an expanding geochemical and archaeological science experimental literature.
View Article and Find Full Text PDF