Proc Natl Acad Sci U S A
September 2024
As climate change shifts crop exposure to dry and wet extremes, a better understanding of factors governing crop response is needed. Recent studies identified shallow groundwater-groundwater within or near the crop rooting zone-as influential, yet existing evidence is largely based on theoretical crop model simulations, indirect or static groundwater data, or small-scale field studies. Here, we use observational satellite yield data and dynamic water table simulations from 1999 to 2018 to provide field-scale evidence for shallow groundwater effects on maize yields across the United States Corn Belt.
View Article and Find Full Text PDFEffective groundwater management is critical to future environmental, ecological, and social sustainability and requires accurate estimates of groundwater withdrawals. Unfortunately, these estimates are not readily available in most areas due to physical, regulatory, and social challenges. Here, we compare four different approaches for estimating groundwater withdrawals for agricultural irrigation.
View Article and Find Full Text PDFCover crops are gaining traction in many agricultural regions, partly driven by increased public subsidies and by private markets for ecosystem services. These payments are motivated by environmental benefits, including improved soil health, reduced erosion, and increased soil organic carbon. However, previous work based on experimental plots or crop modeling indicates cover crops may reduce crop yields.
View Article and Find Full Text PDFAs climate change leads to increased frequency and severity of drought in many agricultural regions, a prominent adaptation goal is to reduce the drought sensitivity of crop yields. Yet many of the sources of average yield gains are more effective in good weather, leading to heightened drought sensitivity. Here we consider two empirical strategies for detecting changes in drought sensitivity and apply them to maize in the United States, a crop that has experienced myriad management changes including recent adoption of drought-tolerant varieties.
View Article and Find Full Text PDFField-level monitoring of crop types in the United States via the Cropland Data Layer (CDL) has played an important role in improving production forecasts and enabling large-scale study of agricultural inputs and outcomes. Although CDL offers crop type maps across the conterminous US from 2008 onward, such maps are missing in many Midwestern states or are uneven in quality before 2008. To fill these data gaps, we used the now-public Landsat archive and cloud computing services to map corn and soybean at 30 m resolution across the US Midwest from 1999-2018.
View Article and Find Full Text PDFClimate-mediated changes in hybridization will dramatically alter the genetic diversity, adaptive capacity, and evolutionary trajectory of interbreeding species. Our ability to predict the consequences of such changes will be key to future conservation and management decisions. Here we tested through simulations how recent warming (over the course of a 32-y period) is affecting the geographic extent of a climate-mediated developmental threshold implicated in maintaining a butterfly hybrid zone ( and ; Lepidoptera: Papilionidae).
View Article and Find Full Text PDFIn modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss.
View Article and Find Full Text PDFLocal adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion.
View Article and Find Full Text PDF