Class A biosolids from water resource recovery facilities (WRRFs) are increasingly used as sustainable alternatives to synthetic fertilizers. However, the high phosphorus to nitrogen ratio in biosolids leads to a potential accumulation of phosphorus after repeated land applications. Extracting vivianite, an FeP mineral, prior to the final dewatering step in the biosolids treatment can reduce the P content in the resulting class A biosolids and achieve a P:N ratio closer to the 1:2 of synthetic fertilizers.
View Article and Find Full Text PDFTwo thermochemical valorization schemes were investigated for co-upgrading dry and wet agricultural wastes through integrated hydrothermal carbonization (HTC) and pyrolysis. In the first pathway, dry and wet wastes were co-carbonized. The resulting hydrochar was pyrolyzed to yield an energy dense biochar (26-32 MJ/kg) high in fixed carbon (41-86 wt%) and low in volatile matter (6-12 wt%).
View Article and Find Full Text PDFBioresour Technol
November 2023
Several limitations hinder the industrial-scale implementation of hydrothermal carbonization (HTC) of biomass, especially the quality of as-carbonized hydrochar. This work investigates solvent extraction of hydrochars to enhance their potential applications. Hydrochars were produced at several HTC temperatures (190, 220, 250 °C) from cellulose and extracted using combinations of green polar solvents (ethyl acetate, acetone, and methanol).
View Article and Find Full Text PDFDespite the ability to perform both processes in the same reactor, hydrothermal carbonization (HTC) and hydrothermal liquefaction (HTL) are considered two distinct processes differentiated by their reaction temperatures. As temperatures increase from the less severe HTC range into the HTL regime, the product distribution progressively favors an organic bio-oil phase relative to solid hydrochar. Solvents are commonly used to extract bio-oil from the solid residues produced during HTL, and to separate the amorphous secondary char from the coal-like primary char of HTC hydrochars.
View Article and Find Full Text PDFAgro-industrial wastes can be thermochemically converted to sustainable fuels and upcycled carbon products. However, processing such feedstocks through pyrolysis or hydrothermal carbonization (HTC) alone yields fuels that require significant downstream upgrading. In this work, apple pomace was treated via a cascaded HTC-pyrolysis process using inexpensive and abundant clay catalysts, montmorillonite and attapulgite.
View Article and Find Full Text PDFAnaerobic digestion (AD) is a viable and cost-effective method for converting organic waste into usable renewable energy. The efficiency of organic waste digestion, nonetheless, is limited due to inhibition and instability. Accordingly, biochar is an effective method for improving the efficiency of AD by adsorbing inhibitors, promoting biogas generation and methane concentration, maintaining process stability, colonizing microorganisms selectively, and mitigating the inhibition of volatile fatty acids and ammonia.
View Article and Find Full Text PDFHydrothermal carbonization is a thermochemical process that converts wet waste biomass into hydrochar, a renewable solid fuel that comprises a coal-like primary phase and an oily secondary phase. The varying oxidation rates of these phases may result in an inefficient energy recovery when combusting the hydrochar, as secondary char is more reactive. Brewer's spent grain, dairy cheese whey and food waste were hydrothermally carbonized at 250 °C.
View Article and Find Full Text PDFThe increased quantities of manure being generated by livestock and their extensive agronomic use have raised concerns around run-off impacting soil and groundwater quality. Manure contains valuable nutrients (especially phosphorus) that are critical to agriculture, but when directly land-applied the run-off of such nutrients contributes to eutrophication of waterways. This study investigates the hydrothermal carbonization of cow manure at two industrially feasible process extremes: 190 °C, 1 h and 230 °C, 3 h, to concentrate and then recover phosphorus from the solid hydrochar via acid leaching and precipitation.
View Article and Find Full Text PDFGlobal health organizations recommend the use of cloth face coverings to slow the spread of COVID-19. Seemingly overnight, companies whose primary business is in no way related to healthcare or personal protective equipment-from mattresses manufacturers to big box stores-transitioned into the "mask business." Many companies advertise antimicrobial masks containing silver, copper, or other antimicrobials.
View Article and Find Full Text PDFWhile mass vaccination has blunted the pandemic in the United States, pockets of vaccine hesitancy remain. Through a nationally representative survey of 1027 adult Americans conducted in February 2021, this study examined individual misconceptions about COVID-19 vaccine safety; the demographic factors associated with these misconceptions; and the relationship between misconceptions and willingness to vaccinate. Misconceptions about vaccine safety were widespread.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2021
Composite mineral-biochars of a homogeneous biomass (cellulose) and heterogeneous biomass (oak leaves) were fabricated with either 5 wt% or 10 wt% minerals (montmorillonite (MMT), kaolinite, and sand) and then pyrolyzed at 600 °C for 60 min. Characterizations including proximate analysis, ultimate analysis, surface area and porosity, morphology, and surface chemistry confirmed that minerals were present on the surface of biochar, and MMT/kaolinite-biochar composites showed a strengthening in the chars' aromatic structures, as well as increases in oxygen-containing surface functional groups. Methylene blue adsorption isotherms indicated that the MMT/kaolinite-biochars had higher adsorption capacities than pure biomass or biomass-sand biochars (110 mg/g and 24 mg/g for MMT-cellulose char and cellulose char, respectively).
View Article and Find Full Text PDFHydrothermal carbonization (HTC) and pyrolysis are two promising thermochemical conversion strategies to valorize agricultural wastes, yet neither process can be implemented alone to sustainably upgrade both wet and dry feedstocks. HTC is ideal for wet feedstocks, such as manure, but its solid hydrochars suffer from low surface area and stability. Pyrolysis is well suited to dry agricultural residues, but pyrolysis biochars have low nutrient contents and bio-oils are often highly oxygenated.
View Article and Find Full Text PDFTo meet human food and fiber needs in an environmentally and economically sustainable way, we must improve the efficiency of waste, water, and nutrient use by converting vast quantities of agricultural and food waste to renewable bioproducts. This work converts waste cherry pits, an abundant food waste in the Great Lakes region, to biochars and activated biochars via slow pyrolysis. Biochars produced have surface areas between 206 and 274 m/g and increased bioavailability of Fe, K, Mg, Mn, and P.
View Article and Find Full Text PDFThe exponential growth in technologies incorporating engineered nanomaterials (ENMs) requires plans to handle waste ENM disposal and accidental environmental release throughout the material life cycle. These scenarios motivate efforts to quantify and model ENM interactions with diverse background particles and solubilized chemical species in a variety of environmental systems. In this study, quantum dot (QD) nanoparticles and clay minerals were mixed in a range of water chemistries in order to develop simple assays to predict aggregation trends.
View Article and Find Full Text PDFWhile we have started down the path towards a global transition to a green economy, as with most things we began with the "low-hanging fruit," such that increasingly difficult material and chemical conversions remain. Coking is one such example; it is unlikely that steel production will transition away from using coking coal anytime in the near future, such that coking wastewater remains a global environmental challenge. However, we can develop greener methods and materials to treat such waste.
View Article and Find Full Text PDFThe identification of biomasses for pyrolytic conversion to biofuels depends on many factors, including: moisture content, elemental and volatile matter composition, thermo-kinetic parameters, and evolved gases. The present work illustrates how canola residue may be a suitable biofuel feedstock for low-temperature (<450 °C) slow pyrolysis with energetically favorable conversions of up to 70 wt% of volatile matter. Beyond this point, thermo-kinetic parameters and activation energies, which increase from 154.
View Article and Find Full Text PDFOpuntia ficus-indica cladodes are a potential source of solid biofuel from marginal, dry land. Experiments assessed the effects of temperature (180-250°C), reaction time (0.5-3h) and biomass to water ratio (B/W; 0.
View Article and Find Full Text PDFLand applied disposal of waste tires has far-reaching environmental, economic, and human health consequences. Pyrolysis represents a potential waste management solution, whereby the solid carbonaceous residue is heated in the absence of oxygen to produce liquid and gaseous fuels, and a solid char. The design of an efficient conversion unit requires information on the reaction kinetics of pyrolysis.
View Article and Find Full Text PDFAs biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.
View Article and Find Full Text PDFIncorporation of torrefied biomass into coal-fired power plants could potentially lower the SOx and net CO2 emissions resulting from electricity generation. However, concerns over lower heating values and slightly higher ash content of torrefied biomass suggest that blending it with coal in industrial boilers may be preferable to complete fuel transition. By studying the oxidation kinetics of coal-torrefied biomass blends in a thermogravimetric analyzer at a heating rate of 100°C/min, we find an additive nature among the fuels for peak mass loss rates and enthalpies of combustion.
View Article and Find Full Text PDFDespite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult's law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups.
View Article and Find Full Text PDFThe vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) grams plus sign in circlemol(-1) were measured over the temperature range of (301 to 486) Kelvin using the isothermal Knudsen effusion technique.
View Article and Find Full Text PDFKnowledge of vapor pressures of high molar mass organics is essential to predicting their behavior in combustion systems as well as their fate and transport within the environment. This study involved polycyclic aromatic compounds (PACs) containing halogen hetero-atoms, including bromine and chlorine. The vapor pressures of eight PACs, ranging in molar mass from (212-336) g.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) are ubiquitous environmental pollutants resulting from the incomplete combustion of coal and fossil fuels. Their vapor pressures are key thermodynamic data essential for modeling fate and transport within the environment. The present study involved nine PAHs containing oxygen heteroatoms, including aldehyde, carboxyl, and nitro groups, specifically 2-nitrofluorene, 9-fluorenecarboxylic acid, 2-fluorenecarboxaldehyde, 2-anthracenecarboxylic acid, 9-anthracenecarboxylic acid, 9-anthraldehyde, 1-nitropyrene, 1-pyrenecarboxaldehyde, and 1-bromo-2-naphthoic acid.
View Article and Find Full Text PDF