Publications by authors named "Jillian King"

Article Synopsis
  • Exposing male rats to a high-fat diet affects their attractiveness to potential mates and the behavior of female mates toward their offspring.
  • The study examined the roles of the stomach and fecal microbiomes by analyzing samples from both offspring and fathers, finding that paternal diet and maternal care impacted the diversity of these microbiomes.
  • Results showed that a father's high-fat diet altered the gut microbiome's composition in offspring, which may influence their stress responses into adulthood.
View Article and Find Full Text PDF

Storing platelet-rich plasma (PRP) for future use is a compelling approach, presuming the retention of biological properties is maintained. However, certain factors in PRP preparations have deleterious effects for the treatment of certain musculoskeletal conditions. The purpose of this study was to measure and compare matrix metalloproteinase protein (MMP) concentrations between fresh and freeze-thawed leukocyte-rich PRP (LR-PRP) inactivated (LR-I) and activated (LR-A) preparations, and leukocyte-poor PRP (LP-PRP) inactivated (LP-I) and activated (LP-A) preparations.

View Article and Find Full Text PDF

Interneurons are critical for information processing in the cortex. In vitro optogenetic studies in mouse primary visual cortex (V1) have sketched the connectivity of a local neural circuit comprising excitatory pyramidal neurons and distinct interneuron subtypes that express parvalbumin (Pvalb+), somatostatin (SOM+), or vasoactive intestinal peptide (VIP+). However, in vivo studies focusing on V1 orientation tuning have ascribed discrepant computational roles to specific interneuron subtypes.

View Article and Find Full Text PDF

The mouse primary visual cortex (V1) has become an important brain area for exploring how neural circuits process information. Optogenetic tools have helped to outline the connectivity of a local V1 circuit comprising excitatory pyramidal neurons and several genetically-defined inhibitory interneuron subtypes that express parvalbumin, somatostatin, or vasoactive intestinal peptide. Optogenetic modulation of individual interneuron subtypes can alter the visual responsiveness of pyramidal neurons with distinct forms of inhibition and disinhibition.

View Article and Find Full Text PDF

Paternal preconception risk factors (e.g. stress, diet, drug use) correlate with metabolic dysfunction in offspring, which is often comorbid with depressive and anxiety-like phenotypes.

View Article and Find Full Text PDF

Visual impairments and retinal abnormalities occur in patients with Alzheimer's disease (AD) and in mouse models of AD. It is important to know the visual ability of mouse models of AD to ensure that age-related cognitive deficits are not confounded by visual impairments. Using OptoMotry, the spatial frequency thresholds of male and female 3xTg-AD mice did not differ from their B6129SF2 wildtype controls between 1-18 months of age, but females had higher spatial frequency thresholds than males.

View Article and Find Full Text PDF

Information processing in the visual system is shaped by recent stimulus history, such that prolonged viewing of an adapting stimulus can alter the perception of subsequently presented test stimuli. In the tilt-after-effect, the perceived orientation of a grating is often repelled away from the orientation of a previously viewed adapting grating. A possible neural correlate for the tilt-after-effect has been described in cat and macaque primary visual cortex (V1), where adaptation produces repulsive shifts in the orientation tuning curves of V1 neurons.

View Article and Find Full Text PDF

Visual adaptation illusions indicate that our perception is influenced not only by the current stimulus but also by what we have seen in the recent past. Adaptation to stimulus contrast (the relative luminance created by edges or contours in a scene) induces the perception of the stimulus fading away and increases the contrast detection threshold in psychophysical tests [1, 2]. Neural correlates of contrast adaptation have been described throughout the visual system including the retina [3], dorsal lateral geniculate nucleus (dLGN) [4, 5], primary visual cortex (V1) [6], and parietal cortex [7].

View Article and Find Full Text PDF

Prolonged viewing of high contrast gratings alters perceived stimulus contrast, and produces characteristic changes in the contrast response functions of neurons in the primary visual cortex (V1). This is referred to as contrast adaptation. Although contrast adaptation has been well-studied, its underlying neural mechanisms are not well-understood.

View Article and Find Full Text PDF