We created an online calculator using machine learning (ML) algorithms to impute the partial pressure of oxygen (PaO)/fraction of delivered oxygen (FiO) ratio using the non-invasive peripheral saturation of oxygen (SpO) and compared the accuracy of the ML models we developed to published equations. We generated three ML algorithms (neural network, regression, and kernel-based methods) using seven clinical variable features (N = 9900 ICU events) and subsequently three features (N = 20,198 ICU events) as input into the models. Data from mechanically ventilated ICU patients were obtained from the publicly available Medical Information Mart for Intensive Care (MIMIC III) database and used for analysis.
View Article and Find Full Text PDFBackground: Pseudomonas aeruginosa (PA) is a common cause of respiratory infection and morbidity. Pseudomonas elastase is an important virulence factor regulated by the lasR gene. Whether PA elastase activity is associated with worse clinical outcomes in ICU patients is unknown.
View Article and Find Full Text PDFInterleukin-36γ (IL-36γ), a member of the IL-1 cytokine superfamily, amplifies lung inflammation and impairs host defense during acute pulmonary infection. To be fully active, IL-36γ is cleaved at its N-terminal region by proteases such as neutrophil elastase (NE) and cathepsin S (CatS). However, it remains unclear whether limiting extracellular proteolysis restrains the inflammatory cascade triggered by IL-36γ during infection.
View Article and Find Full Text PDFAcute lung injury is characterized by excessive extracellular matrix proteolysis and neutrophilic inflammation. A major risk factor for lung injury is bacterial pneumonia. However, host factors that protect against pathogen-induced and host-sustained proteolytic injury following infection are poorly understood.
View Article and Find Full Text PDFIrreproducibility of preclinical biomedical research has gained recent attention. It is suggested that requiring authors to complete a checklist at the time of manuscript submission would improve the quality and transparency of scientific reporting, and ultimately enhance reproducibility. Whether a checklist enhances quality and transparency in reporting preclinical animal studies, however, has not been empirically studied.
View Article and Find Full Text PDF