Publications by authors named "Jill S Wheeler"

Modification of the dipeptide of phenylalanine, FF, with a boronic acid (BA) functionality imparts unique aqueous self-assembly behavior that responds to multiple stimuli. Changes in pH and ionic strength are used to trigger hydrogelation via the formation of nanoribbon networks. Furthermore, we show for the first time that the binding of polyols to the BA functionality can modulate a peptide between its assembled and disassembled states.

View Article and Find Full Text PDF

The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. We have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units.

View Article and Find Full Text PDF

Mimicking the remarkable dynamic and multifunctional utility of biological nanofibers, such as microtubules, is a challenging and technologically attractive objective in synthetic supramolecular chemistry. Understanding the complex molecular interactions that govern the assembly of synthetic materials, such as peptides, is key to meeting this challenge. Using molecular dynamics simulations to guide molecular design, we explore here the self-assembly of structurally and functionally asymmetric wedge-shaped peptides.

View Article and Find Full Text PDF

Many reactions in both chemistry and biology rely on the ability to precisely control and fix the solution concentrations of either protons or hydroxide ions. In this report, we describe the behavior of thermally programmable pH buffer systems based on the copolymerization of varying amounts of acrylic acid (AA) groups into N-isopropylacrylamide polymers. Because the copolymers undergo phase transitions upon heating and cooling, the local environment around the AA groups can be reversibly switched between hydrophobic and hydrophilic states affecting the ionization behavior of the acids.

View Article and Find Full Text PDF