Publications by authors named "Jill R Turner"

Background: The "loss of control" over drug consumption, present in opioid use disorder (OUD) and known as escalation of intake, is well-established in preclinical rodent models. However, little is known about how antecedent behavioral characteristics, such as valuation of hedonic reinforcers prior to drug use, may impact the trajectory of fentanyl intake over time. Moreover, it is unclear if distinct escalation phenotypes may be driven by genetic markers predictive of OUD susceptibility.

View Article and Find Full Text PDF

Background: Chronic cigarette smokers report withdrawal symptomology, including affective dysfunction and cognitive deficits. While there are studies demonstrating sex specific withdrawal symptomology in nicotine-dependent individuals, literature examining the underlying biological mediators of this is scant and not in complete agreement. Therefore, in this study, we evaluated the sex specific effects of nicotine and withdrawal on contextual fear memory, a hippocampally dependent aspect of cognition that is disrupted in nicotine withdrawal.

View Article and Find Full Text PDF

Recent evidence indicates that neuronal activity within the claustrum (CLA) may be central to cellular and behavioral responses to psychedelic hallucinogens. The CLA prominently innervates many cortical targets and displays exceptionally high levels of serotonin (5-HT) binding. However, the influence of serotonin receptors, prime targets of psychedelic drug action, on CLA activity remains unexplored.

View Article and Find Full Text PDF

This study assessed the ability of α and α-adrenergic drugs to decrease fentanyl-induced locomotor and ventilatory depression. Rats were given saline or fentanyl, followed by: (1) naltrexone, (2) naloxone, (3) nalmefene, (4) α agonist phenylephrine, (5) α antagonist prazosin, (6) α antagonist BMY-7378, (7) α agonist clonidine, (8) α antagonist yohimbine or (9) vehicle. All µ-opioid antagonists dose-dependently reversed fentanyl-induced locomotor and ventilatory depression.

View Article and Find Full Text PDF

While in the process of designing more effective synthetic opioid rescue agents, we serendipitously identified a new chemotype of potent synthetic opioid. Here, we report that conformational constraint of a piperazine ring converts a mu opioid receptor (MOR) antagonist into a potent MOR agonist. The prototype of the series, which we have termed atoxifent (), possesses potent in vitro agonist activity.

View Article and Find Full Text PDF

Nicotine use disorder remains a major public health emergency despite years of trumpeting the consequences of smoking. This is likely due to the complex interplay of genetics and nicotine exposure across the lifespan of these individuals. Genetics influence all aspects of life, including complex disorders such as nicotine use disorder.

View Article and Find Full Text PDF

Background: Smoking is the largest preventable cause of death and disease in the United States, with <5% of quit attempts being successful. Microglia activation and proinflammatory neuroimmune signaling in reward neurocircuitry are implicated in nicotine withdrawal symptomology. Microglia are integral regulators of blood-brain barrier (BBB) functionality as well; however, whether the effects of nicotine withdrawal on microglia function impact BBB integrity is unknown.

View Article and Find Full Text PDF

Tobacco smoking remains a leading cause of preventable death in the United States, with approximately a 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction.

View Article and Find Full Text PDF

Dopaminergic signaling in the nucleus accumbens shell (NAc) regulates neuronal activity relevant to reward-related learning, including cocaine-associated behaviors. Although astrocytes respond to dopamine and cocaine with structural changes, the impact of dopamine and cocaine on astrocyte functional plasticity has not been widely studied. Specifically, behavioral implications of voltage-gated channel activity in the canonically non-excitable astrocytes are not known.

View Article and Find Full Text PDF

Tobacco smoking remains a leading cause of preventable death in the United States, with a less than 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 () and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (), have been linked to nicotine addiction.

View Article and Find Full Text PDF

Concomitant use of tobacco and opioids represents a growing public health concern. In fact, the mortality rate due to smoking-related illness approaches 50% among SUD patients. Cumulative evidence demonstrates that the vulnerability to drugs of abuse is influenced by behavioral, environmental, and genetic factors.

View Article and Find Full Text PDF

Opioid use disorder is a leading cause of morbidity and mortality in the United States. Increasing pre-clinical and clinical evidence demonstrates sex differences in opioid use and dependence. However, the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are still obscure.

View Article and Find Full Text PDF

While commendable strides have been made in reducing smoking initiation and improving smoking cessation rates, current available smoking cessation treatment options are still only mildly efficacious and show substantial interindividual variability in their therapeutic responses. Therefore, the primary goal of preclinical research has been to further the understanding of the neural substrates and genetic influences involved in nicotine's effects and reassess potential drug targets. Pronounced advances have been made by investing in new translational approaches and placing more emphasis on bridging the gap between human and rodent models of dependence.

View Article and Find Full Text PDF

Smoking remains the leading cause of morbidity and mortality in the United States, with less than 5% of smokers attempting to quit succeeding. This low smoking cessation success rate is thought to be due to the long-term adaptations and alterations in synaptic plasticity that occur following chronic nicotine exposure and withdrawal. Glial cells have recently emerged as active players in the development of dependence phenotypes due to their roles in modulating neuronal functions and synaptic plasticity.

View Article and Find Full Text PDF

HIV-1 Associated Neurocognitive Disorder (HAND) is a common and clinically detrimental complication of HIV infection. Viral proteins, including Tat, released from infected cells, cause neuronal toxicity. Substance abuse in HIV-infected patients greatly influences the severity of neuronal damage.

View Article and Find Full Text PDF

Smoking is the largest preventable cause of death and disease in the United States. However, <5% of quit attempts are successful, underscoring the urgent need for novel therapeutics. Microglia are one untapped therapeutic target.

View Article and Find Full Text PDF

Deficient motivation contributes to numerous psychiatric disorders, including withdrawal from drug use, depression, schizophrenia, and others. Nucleus accumbens (NAc) has been implicated in motivated behavior, but it remains unclear whether motivational drive is linked to discrete neurobiological mechanisms within the NAc. To examine this, we profiled cohorts of Sprague-Dawley rats in a test of motivation to consume sucrose.

View Article and Find Full Text PDF

Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence.

View Article and Find Full Text PDF

Dopamine is critical for processing of reward and etiology of drug addiction. Astrocytes throughout the brain express dopamine receptors, but consequences of astrocytic dopamine receptor signaling are not well established. We found that extracellular dopamine triggered rapid concentration-dependent stellation of astrocytic processes that was not a result of dopamine oxidation but instead relied on both cAMP-dependent and cAMP-independent dopamine receptor signaling.

View Article and Find Full Text PDF

mutations cause lissencephaly (LIS), a severe developmental brain malformation. Much less is known about its role in the mature nervous system. LIS1 regulates the microtubule motor cytoplasmic dynein 1 (dynein), and as LIS1 and dynein are both expressed in the adult nervous system, Lis1 could potentially regulate dynein-dependent processes such as axonal transport.

View Article and Find Full Text PDF

Neuregulin 3 (NRG3) and ErbB4 have been linked to nicotine addiction; however, the neuronal mechanisms and behavioral consequences of NRG3-ErbB4 sensitivity to nicotine remain elusive. Recent literature suggests that relapse to smoking is due to a lack of impulsive control, which is thought to be due to altered functioning within the orbitofrontal cortex (OFC). Therefore, we examined circuitry changes within this structure following nicotine application.

View Article and Find Full Text PDF

Addiction to nicotine and the inability to quit smoking are influenced by genetic factors, emphasizing the importance of understanding how genes and drugs of abuse mechanistically impact each other. One well-characterized protein responsible for regulating both response to drugs and gene expression is the transcription factor CREB (cAMP-responsive element binding protein). Previous work indicates that hippocampal-specific alterations in CREB signaling and synaptic plasticity may underlie certain nicotine withdrawal phenotypes.

View Article and Find Full Text PDF

The United States is in the midst of an opiate epidemic, with abuse of prescription and illegal opioids increasing steadily over the past decade. While it is clear that there is a genetic component to opioid addiction, there is a significant portion of heritability that cannot be explained by genetics alone. The current study was designed to test the hypothesis that maternal exposure to opioids prior to pregnancy alters abuse liability in subsequent generations.

View Article and Find Full Text PDF