Publications by authors named "Jill M Williamson"

Oligodendrocytes that survive demyelination can remyelinate, including in multiple sclerosis (MS), but how they do so is unclear. In this study, using zebrafish, we found that surviving oligodendrocytes make few new sheaths and frequently mistarget new myelin to neuronal cell bodies, a pathology we also found in MS. In contrast, oligodendrocytes generated after demyelination make abundant and correctly targeted sheaths, indicating that they likely also have a better regenerative potential in MS.

View Article and Find Full Text PDF

Myelination of axons by oligodendrocytes enables fast saltatory conduction. Oligodendrocytes are responsive to neuronal activity, which has been shown to induce changes to myelin sheaths, potentially to optimize conduction and neural circuit function. However, the cellular bases of activity-regulated myelination in vivo are unclear, partly due to the difficulty of analyzing individual myelinated axons over time.

View Article and Find Full Text PDF

In the central nervous system, oligodendrocyte-lineage cells and myelination can adapt to physiological brain activity. Since myelin can in turn regulate neuronal function, such "adaptive" myelination has been proposed as a form of nervous system plasticity, implicated in learning and cognition. The molecular and cellular mechanisms underlying adaptive myelination and its functional consequences remain to be fully defined, partly because it remains challenging to manipulate activity and monitor myelination over time in vivo at single-cell resolution, in a model that would also allow examination of the functional output of individual neurons and circuits.

View Article and Find Full Text PDF

Myelin sheaths speed up impulse propagation along the axons of neurons without the need for increasing axon diameter. Subsequently, myelin (which is made by oligodendrocytes in the central nervous system) allows for highly complex yet compact circuitry. Cognitive processes such as learning require central nervous system plasticity throughout life, and much research has focused on the role of neuronal, in particular synaptic, plasticity as a means of altering circuit function.

View Article and Find Full Text PDF

Myelinating oligodendrocytes are essential for central nervous system (CNS) formation and function. Their disruption is implicated in numerous neurodevelopmental, neuropsychiatric and neurodegenerative disorders. However, recent studies have indicated that oligodendrocytes may be tractable for treatment of disease.

View Article and Find Full Text PDF

The correct targeting of myelin is essential for nervous system formation and function. Oligodendrocytes in the CNS myelinate some axons, but not others, and do not myelinate structures including cell bodies and dendrites [1]. Recent studies indicate that extrinsic signals, such as neuronal activity [2, 3] and cell adhesion molecules [4], can bias myelination toward some axons and away from cell bodies and dendrites, indicating that, in vivo, neuronal and axonal cues regulate myelin targeting.

View Article and Find Full Text PDF