Publications by authors named "Jill L S Murray"

Fecal sources to recreational surf zone waters should be identified to protect public health. While watershed origins of human and other fecal sources are often discoverable by quantitative polymerase chain reaction (qPCR) of fecal markers using spatially stratified samples, similarly assessing wastewater treatment plant (WWTP) outfall and other offshore contributions to surf zones is challenged by individual marker fate and transport. Here, bacterial communities were assessed for relatedness between all hypothesized fecal sources and surf zone waters for two urban California recreational beaches, by sequencing genes encoding 16S rRNA and analyzing data using SourceTracker and FEAST.

View Article and Find Full Text PDF

Microbial source tracking (MST) can identify and locate surf zone fecal indicator bacteria (FIB) sources. However, DNA-based fecal marker results may raise new questions, since FIB and DNA marker sources can differ. Here, during 2 years of summertime (dry season) MST for a Goleta, California recreational beach, surf zone FIB were mainly from gulls, yet low level human-associated DNA-based fecal marker (HF183) was detected in 25 and 14% of surf zone water samples, respectively.

View Article and Find Full Text PDF

Worldwide, fecal indicator bacteria (FIB) evidence coastal water contamination for which sources are unknown. Here, for two FIB-impacted Santa Barbara recreational beaches, hypothesized fecal sources were investigated over three dry seasons (summers) using nearly 2000 field samples of water (ocean, creek, groundwater), sand, sediments, effluent and fecal sources. In years 1 and 2, gull and dog feces were identified as the probable main FIB sources to surf zone waters, yet HF183 human fecal markers were consistently detected.

View Article and Find Full Text PDF

Modern nano-engineered pesticides have great promise for agriculture due to their extended, low dose release profiles that are intended to increase effectiveness but reduce environmental harm. Whether nanopesticides, including copper (Cu) formulations, cause reduced levels of toxicity to non-target aquatic organisms is unclear but important to assess. Predicting how aquatic species respond to incidental exposure to Cu-based nanopesticides is challenging because of the expected very low concentrations in the environment, and the two forms of exposure that may occur, namely to Cu ions and Cu nanoparticles.

View Article and Find Full Text PDF

Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination.

View Article and Find Full Text PDF

Elevated levels of fecal indicator bacteria (FIB), including Escherichia coli and enterococci, trigger coastal beach advisories and signal public health risks. Solving FIB pollution in suburban coastal watersheds is challenging, as there are many potential sources. The Arroyo Burro watershed in Santa Barbara, CA is an example, with its popular, but chronically FIB-contaminated beach.

View Article and Find Full Text PDF

Separating storm drains and sanitary sewers is expected to control sewage pollution, for example, from combined sewer overflows, and to reduce excessive stormwater flow to wastewater treatment plants. However, sewage contamination has been found in such separated storm drain systems in urban areas during dry-weather flow. To determine whether transmission of sewage is occurring from leaking sanitary sewers directly to leaking separated storm drains, field experiments were performed in three watersheds in Santa Barbara, CA.

View Article and Find Full Text PDF

High fecal indicator bacterial (FIB) concentrations signal urban coastal water quality impairments that can threaten public health. However, FIB (total and fecal coliform plus Enterococcus sp.) concentrations are not specific to human waste, and thus, microbial source tracking (MST) is employed to assess public health risks and remediation alternatives.

View Article and Find Full Text PDF

Microbiological contamination from runoff is a human health concern in urbanized coastal environments, but the contamination sources are often unknown. This study quantified fecal indicator bacteria and compared the distributions of human-specific genetic markers and bacterial community composition during dry and wet weather in urban creeks draining two neighboring watersheds in Santa Barbara, CA. In a prior study conducted during exclusively dry weather, the creeks were contaminated with human waste as indicated by elevated numbers of the human-specific Bacteroidales marker HF183 (Sercu et al.

View Article and Find Full Text PDF

Monitoring microbiological water quality is important for protecting water resources and the health of swimmers. Routine monitoring relies on cultivating fecal indicator bacteria (FIB), frequently using defined substrate technology. Defined substrate technology is designed to specifically enrich for FIB, but a complete understanding of the assay microbiology requires culture-independent analysis of the enrichments.

View Article and Find Full Text PDF