Plasmacytoid dendritic cells (pDCs) not only are specialized in their capacity to secrete large amounts of type I interferon (IFN) but also serve to enable both innate and adaptive immune responses through expression of additional proinflammatory cytokines, chemokines, and costimulatory molecules. Persistent activation of pDCs has been demonstrated in a number of autoimmune diseases. To evaluate the potential benefit of depleting pDCs in autoimmunity, a monoclonal antibody targeting the pDC-specific marker immunoglobulin-like transcript 7 was generated.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) impacts multiple organ systems, although the causes of many individual SLE pathologies are poorly understood. This study was designed to elucidate organ-specific inflammation by identifying proteins that correlate with SLE organ involvement and to evaluate established biomarkers of disease activity across a diverse patient cohort. Plasma proteins and autoantibodies were measured across seven SLE manifestations.
View Article and Find Full Text PDFAutoantibodies of the IgG subclass are pathogenic in a number of autoimmune disorders such as systemic lupus erythomatosus. The presence of circulating IgE autoantibodies in autoimmune patients has also been known for almost 40 years. Despite their role in allergies, IgE autoantibodies are not associated with a higher rate of atopy in these patients.
View Article and Find Full Text PDFCurr Opin Immunol
February 2014
Noncanonical autophagy is utilized by phagocytes to kill and digest extracellular pathogens. This process is initiated at the cell surface by receptors that recruit elements of the autophagy machinery, like LC3, to the phagosome. Also known as LC3-associated phagocytosis, the intersection of autophagy and phagocytosis was initially described as a pathway that limits the proliferation of engulfed pathogens by expediting phagosome maturation.
View Article and Find Full Text PDFToll-like receptor-9 (TLR9) is largely responsible for discriminating self from pathogenic DNA. However, association of host DNA with autoantibodies activates TLR9, inducing the pathogenic secretion of type I interferons (IFNs) from plasmacytoid dendritic cells (pDCs). Here, we found that in response to DNA-containing immune complexes (DNA-IC), but not to soluble ligands, IFN-α production depended upon the convergence of the phagocytic and autophagic pathways, a process called microtubule-associated protein 1A/1B-light chain 3 (LC3)-associated phagocytosis (LAP).
View Article and Find Full Text PDFObjective: A growing number of intracellular autoantigenic polypeptides have been found to play a second biologic role when they are present in the extracellular medium. We undertook this study to determine whether the CENP-B nuclear autoantigen could be added to this set of bifunctional molecules.
Methods: Purified CENP-B or CENP-B released from apoptotic cells was tested for surface binding to a number of human cell types by cell-based enzyme-linked immunosorbent assay, flow cytometry, and indirect immunofluorescence.
Modulation of immune responses using Toll-like receptor (TLR) ligands is fast becoming one of the main new approaches for the treatment of infectious and allergic diseases. Characterizing the role of genetic factors in modulating responses to these ligands will be crucial in determining the efficacy of a particular treatment. Our previous findings have shown that treatment of Mycobacterium bovis BCG infection with a synthetic TLR7 ligand resulted in a reduction of the splenic bacterial load only in mice carrying a wild-type allele of Nramp1.
View Article and Find Full Text PDFObjective: Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis due to excessive and dysregulated collagen production by fibroblasts. Previously, we reported that anti-DNA topoisomerase I (anti-topo I) antibodies bound specifically to fibroblast surfaces; however, we had not identified their antigenic target. We undertook this study to characterize the target of anti-topo I antibodies on fibroblasts and the effects of their binding.
View Article and Find Full Text PDFObjective: Fibroblasts play a crucial role in the development of systemic sclerosis (SSc), and antifibroblast antibodies (AFAs) capable of inducing a proinflammatory phenotype in fibroblasts have been detected in the sera of SSc patients. This study examined the prevalence of AFAs in SSc and other diseases and the possible correlation between AFAs and known antinuclear antibody specificities in SSc patients.
Methods: Sera from 99 patients with SSc, 123 patients with other autoimmune and nonautoimmune diseases, and 30 age- and sex-matched healthy controls were examined.