Publications by authors named "Jill Gallaher"

Toxicity and emerging drug resistance pose important challenges in poly-adenosine ribose polymerase inhibitor (PARPi) maintenance therapy of ovarian cancer. We propose that adaptive therapy, which dynamically reduces treatment based on the tumor dynamics, might alleviate both issues. Utilizing in vitro time-lapse microscopy and stepwise model selection, we calibrate and validate a differential equation mathematical model, which we leverage to test different plausible adaptive treatment schedules.

View Article and Find Full Text PDF

Unlabelled: Adaptive therapies that alternate between drug applications and drug-free vacations can exploit competition between sensitive and resistant cells to maximize the time to progression. However, optimal dosing schedules depend on the properties of metastases, which are often not directly measurable in clinical practice. Here, we proposed a framework for estimating features of metastases through tumor response dynamics during the first adaptive therapy treatment cycle.

View Article and Find Full Text PDF

Toxicity and emerging drug resistance are important challenges in PARP inhibitor (PARPi) treatment of ovarian cancer. Recent research has shown that evolutionary-inspired treatment algorithms which adapt treatment to the tumor's treatment response (adaptive therapy) can help to mitigate both. Here, we present a first step in developing an adaptive therapy protocol for PARPi treatment by combining mathematical modelling and wet-lab experiments to characterize the cell population dynamics under different PARPi schedules.

View Article and Find Full Text PDF

Adaptive therapy is a dynamic cancer treatment protocol that updates (or 'adapts') treatment decisions in anticipation of evolving tumor dynamics. This broad term encompasses many possible dynamic treatment protocols of patient-specific dose modulation or dose timing. Adaptive therapy maintains high levels of tumor burden to benefit from the competitive suppression of treatment-sensitive subpopulations on treatment-resistant subpopulations.

View Article and Find Full Text PDF

Background: We hypothesize that cancer survival can be improved through adapting treatment strategies to cancer evolutionary dynamics and conducted a phase 1b study in metastatic castration sensitive prostate cancer (mCSPC). Methods: Men with asymptomatic mCSPC were enrolled and proceeded with a treatment break after achieving > 75% PSA decline with LHRH analog plus an NHA. ADT was restarted at the time of PSA or radiographic progression and held again after achieving >50% PSA decline.

View Article and Find Full Text PDF

Background: Adaptive therapy aims to tackle cancer drug resistance by leveraging resource competition between drug-sensitive and resistant cells. Here, we present a theoretical study of intra-tumoral competition during adaptive therapy, to investigate under which circumstances it will be superior to aggressive treatment.

Methods: We develop and analyse a simple, 2-D, on-lattice, agent-based tumour model in which cells are classified as fully drug-sensitive or resistant.

View Article and Find Full Text PDF

Tumors experience temporal and spatial fluctuations in oxygenation. Hypoxia inducible transcription factors (HIF-α) respond to low levels of oxygen and induce re-supply oxygen. HIF-α stabilization is typically facultative, induced by hypoxia and reduced by normoxia.

View Article and Find Full Text PDF

The Hybrid Automata Library (HAL) is a Java Library developed for use in mathematical oncology modeling. It is made of simple, efficient, generic components that can be used to model complex spatial systems. HAL's components can broadly be classified into: on- and off-lattice agent containers, finite difference diffusion fields, a GUI building system, and additional tools and utilities for computation and data collection.

View Article and Find Full Text PDF

Glioblastomas are aggressive primary brain tumors known for their inter- and intratumor heterogeneity. This disease is uniformly fatal, with intratumor heterogeneity the major reason for treatment failure and recurrence. Just like the nature vs nurture debate, heterogeneity can arise from intrinsic or environmental influences.

View Article and Find Full Text PDF

Paracrine PDGF signaling is involved in many processes in the body, both normal and pathological, including embryonic development, angiogenesis, and wound healing as well as liver fibrosis, atherosclerosis, and cancers. We explored this seemingly dual (normal and pathological) role of PDGF mathematically by modeling the release of PDGF in brain tissue and then varying the dynamics of this release. Resulting simulations show that by varying the dynamics of a PDGF source, our model predicts three possible outcomes for PDGF-driven cellular recruitment and lesion growth: (1) localized, short duration of growth, (2) localized, chronic growth, and (3) widespread chronic growth.

View Article and Find Full Text PDF

Tumors are not static masses of cells but dynamic ecosystems where cancer cells experience constant turnover and evolve fitness-enhancing phenotypes. Selection for different phenotypes may vary with (1) the tumor niche (edge or core), (2) cell turnover rates, (3) the nature of the tradeoff between traits, and (4) whether deaths occur in response to demographic or environmental stochasticity. Using a spatially-explicit agent-based model, we observe how two traits (proliferation rate and migration speed) evolve under different tradeoff conditions with different turnover rates.

View Article and Find Full Text PDF

In this work, we analyze a mathematical model we introduced previously for the dynamics of multiple myeloma and the immune system. We focus on four main aspects: (1) obtaining and justifying ranges and values for all parameters in the model; (2) determining a subset of parameters to which the model is most sensitive; (3) determining which parameters in this subset can be uniquely estimated given certain types of data; and (4) exploring the model numerically. Using global sensitivity analysis techniques, we found that the model is most sensitive to certain growth, loss, and efficacy parameters.

View Article and Find Full Text PDF

Microglia are a major cellular component of gliomas, and abundant in the centre of the tumour and at the infiltrative margins. While glioma is a notoriously infiltrative disease, the dynamics of microglia and glioma migratory patterns have not been well characterized. To investigate the migratory behaviour of microglia and glioma cells at the infiltrative edge, we performed two-colour time-lapse fluorescence microscopy of brain slices generated from a platelet-derived growth factor-B (PDGFB)-driven rat model of glioma, in which glioma cells and microglia were each labelled with one of two different fluorescent markers.

View Article and Find Full Text PDF

Treatment of advanced cancers has benefited from new agents that supplement or bypass conventional therapies. However, even effective therapies fail as cancer cells deploy a wide range of resistance strategies. We propose that evolutionary dynamics ultimately determine survival and proliferation of resistant cells.

View Article and Find Full Text PDF

Gliomas are the most common of all primary brain tumors. They are characterized by their diffuse infiltration of the brain tissue and are uniformly fatal, with glioblastoma being the most aggressive form of the disease. In recent years, the over-expression of platelet-derived growth factor (PDGF) has been shown to produce tumors in experimental rodent models that closely resemble this human disease, specifically the proneural subtype of glioblastoma.

View Article and Find Full Text PDF

Metastatic castrate resistant prostate cancer (mCRPC) is responsible for the majority of prostate cancer deaths with the median survival after diagnosis being 2 years. The metastatic lesions often arise in the skeleton, and current treatment options are primarily palliative. Using guidelines set forth by the National Comprehensive Cancer Network (NCCN), the medical oncologist has a number of choices available to treat the metastases.

View Article and Find Full Text PDF

A tumour is a heterogeneous population of cells that competes for limited resources. In the clinic, we typically probe the tumour by biopsy, and then characterize it by the dominant genetic clone. But genotypes are only the first link in the chain of hierarchical events that leads to a specific cell phenotype.

View Article and Find Full Text PDF

To provide a better understanding of the relationship between primary tumor growth rates and metastatic burden, we present a method that bridges tumor growth dynamics at the population level, extracted from the SEER database, to those at the tissue level. Specifically, with this method, we are able to relate estimates of tumor growth rates and metastatic burden derived from a population-level model to estimates of the primary tumor vascular response and the circulating tumor cell (CTC) fraction derived from a tissue-level model. Variation in the population-level model parameters produces differences in cancer-specific survival and cure fraction.

View Article and Find Full Text PDF

It is well known that at the gel-liquid phase-transition temperature a lipid bilayer membrane exhibits an increased ion permeability. We analyze the quantized currents in which the increased permeability presents itself. The open time histogram shows a "-3/2" power law which implies an open-closed transition rate that decreases like k(t)∝t(-1) as time evolves.

View Article and Find Full Text PDF

Hysteretic behavior is found experimentally in the transmembrane potential at low extracellular potassium in mouse lumbrical muscle cells. Adding isoprenaline to the external medium eliminates the bistable, hysteretic region. The system can be modeled mathematically and understood analytically with and without isoprenaline.

View Article and Find Full Text PDF

We present a model for the control of the transmembrane potential of mammalian skeletal muscle cell. The model involves active and passive transport of Na(+), K(+), and Cl(-). As we check the model against experimental measurements on murine skeletal muscle cells, we find that the model can account for the observed bistability of the transmembrane potential at low extracellular potassium concentration.

View Article and Find Full Text PDF