DNA damage can be generated in multiple ways from genotoxic and physiologic sources. Genotoxic damage is known to disrupt cellular functions and is lethal if not repaired properly. We compare the transcriptional programs activated in response to genotoxic DNA damage induced by ionizing radiation (IR) in abl pre-B cells from mice deficient in DNA damage response (DDR) genes , and .
View Article and Find Full Text PDFDeficiencies in the ATM gene are the underlying cause for ataxia telangiectasia, a syndrome characterized by neurological, motor and immunological defects, and a predisposition to cancer. MicroRNAs (miRNAs) are useful tools for cancer profiling and prediction of therapeutic responses to clinical regimens. We investigated the consequences of ATM deficiency on miRNA expression and associated gene expression in normal human mammary epithelial cells (HME-CCs).
View Article and Find Full Text PDFBackground: Double strand (ds) DNA breaks are a form of DNA damage that can be generated from both genotoxic exposures and physiologic processes, can disrupt cellular functions and can be lethal if not repaired properly. Physiologic dsDNA breaks are generated in a variety of normal cellular functions, including the RAG endonuclease-mediated rearrangement of antigen receptor genes during the normal development of lymphocytes. We previously showed that physiologic breaks initiate lymphocyte development-specific transcriptional programs.
View Article and Find Full Text PDFAs DNA damage checkpoints are barriers to carcinogenesis, G(2) checkpoint function was quantified to test for override of this checkpoint during melanomagenesis. Primary melanocytes displayed an effective G(2) checkpoint response to ionizing radiation (IR)-induced DNA damage. Thirty-seven percent of melanoma cell lines displayed a significant defect in G(2) checkpoint function.
View Article and Find Full Text PDF