Publications by authors named "Jill D Andersen"

The global and economic success of immunoglobulin-based therapeutics in treating a wide range of diseases has heightened the need to further enhance their efficacy and lifetime while diminishing deleterious side effects. The three most ubiquitous challenges of therapeutic immunoglobulin delivery are their relatively short lifetimes in vivo, the immunologic consequences of soluble antibody-antigen complexes, and the emergence of anti-drug antibodies. We describe the rapid, cell-tolerated chemical engineering of the erythrocyte membrane in order to display any antibody, our model system being the display of anti-Tumor Necrosis Factor (anti-TNFα), on the surface of long-lived red blood cells (RBCs) while masking the antibody's Fc region.

View Article and Find Full Text PDF

The field of polymer-based membrane engineering has expanded since we first demonstrated the reaction of N-hydroxysuccinimide ester-terminated polymers with cells and tissues almost two decades ago. One remaining obstacle, especially for conjugation of polymers to cells, has been that exquisite control over polymer structure and functionality has not been used to influence the behavior of cells. Herein, we describe a multifunctional atom transfer radical polymerization initiator and its use to synthesize water-soluble polymers that are modified with bisphosphonate side chains and then covalently bound to the surface of live cells.

View Article and Find Full Text PDF

A new form of high surface bioelectrode based on electrospun gold microfiber with -immobilized glucose oxidase was developed. The gold fibers were prepared by electroless deposition of gold nanoparticles on a poly(acrylonitrile)-HAuCl(4) electrospun fiber. The material was characterized using electron microscopy, XRD and BET, as well as cyclic voltammetry and biochemical assay of the immobilized enzyme.

View Article and Find Full Text PDF

A new form of high surface area bioelectrode, based on nanofibers of electrospun gold with immobilized fructose dehydrogenase, was developed. The gold fibers were prepared by electroless deposition of gold nanoparticles on an electrospun poly(acrylonitrile)-HAuCl(4) fiber. The material was characterized using electron microscopy, XRD and BET, as well as cyclic voltammetry and biochemical assay of the immobilized enzyme.

View Article and Find Full Text PDF

We report the synthesis of new polymers based on a dimethylacrylamide-methacrylate (DMAA-MA) co-polymer backbone that support both chemical and biological agent decontamination. Polyurethanes containing the redox enzymes glucose oxidase and horseradish peroxidase can convert halide ions into active halogens and exert striking bactericidal activity against gram positive and gram negative bacteria. New materials combining those biopolymers with a family of N-alkyl 4-pyridinium aldoxime (4-PAM) halide-acrylate co-polymers offer both nucleophilic activity for the detoxification of organophosphorus nerve agents and internal sources of halide ions for generation of biocidal activity.

View Article and Find Full Text PDF