Abemaciclib is an orally administered, potent, and selective small molecule inhibitor of cyclin-dependent kinases 4 and 6, approved for advanced or metastatic breast cancer. This study aimed to use an exposure-response approach to investigate the effect of abemaciclib and its active metabolites (M2 and M20) on QTc interval and delay in cardiac repolarization at clinically relevant exposures. This was a single-blind, randomized, and placebo-controlled study of ascending doses of abemaciclib.
View Article and Find Full Text PDFAbemaciclib, an inhibitor of cyclin dependent kinases 4 and 6, is indicated for metastatic breast cancer treatment. Reversible increases in serum creatinine levels of ~15-40% over baseline have been observed following abemaciclib dosing. This study assessed the in vitro and clinical inhibition of renal transporters by abemaciclib and its metabolites using metformin (a clinically relevant transporter substrate), in a clinical study that quantified glomerular filtration and iohexol clearance.
View Article and Find Full Text PDFBackground And Objectives: Cytochrome P450 2C9 (CYP2C9) is involved in the biotransformation of many commonly used drugs, and significant drug interactions have been reported for CYP2C9 substrates. Previously published physiologically based pharmacokinetic (PBPK) models of tolbutamide are based on an assumption that its metabolic clearance is exclusively through CYP2C9; however, many studies indicate that CYP2C9 metabolism is only responsible for 80-90% of the total clearance. Therefore, these models are not useful for predicting the magnitude of CYP2C9 drug-drug interactions (DDIs).
View Article and Find Full Text PDFDuloxetine selectively inhibits the serotonin (5-HT) and norepinephrine (NE) transporters (5-HTT and NET, respectively), as demonstrated in vitro and in preclinical studies; however, transporter inhibition has not been fully assessed in vivo at the approved dose of 60 mg/d. Here, the in vivo effects of dosing with duloxetine 60 mg once daily for 11 days in healthy subjects were assessed in 2 studies: (1) centrally (n = 11), by measuring concentrations of 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylglycol (DHPG), and NE in cerebrospinal fluid, and (2) versus escitalopram 20 mg/d (n = 32) in a 2-period crossover study by assessing the ΔDHPG/ΔNE ratio in plasma during orthostatic testing and by pharmacokinetic/pharmacodynamic modeling of reuptake inhibition using subjects' serum in cell lines expressing cloned human 5-HTT or NET. At steady state, duloxetine significantly reduced concentrations of DHPG and 5-hydroxyindoleacetic acid (P < 0.
View Article and Find Full Text PDFA decrease in heart rate variability (HRV) can indicate increased sympathetic nervous system activity and possibly increased norepinephrine levels. In this randomized, placebo- and escitalopram (ESC)-controlled, subject-blind, 2-period, crossover study, 26 healthy subjects 50 to 65 years old received duloxetine (DLX) 60 mg once daily or ESC 20 mg once daily for 11 days, each in sequential study periods separated by a 10-day or more washout period. Continuous electrocardiogram recordings were obtained by Holter monitoring (baseline, day 9, and day 10 of treatment).
View Article and Find Full Text PDFPurpose: No consistent method is available for finding stable warfarin maintenance doses and fast stabilization of international normalized ratio (INR) values among healthy subjects in experimental warfarin interaction studies. Using data from an earlier study that targeted a stable INR of 1.5-2.
View Article and Find Full Text PDFDuloxetine, a potent reuptake inhibitor of serotonin (5-HT) and norepinephrine, is effective for the treatment of major depressive disorder, diabetic neuropathic pain, stress urinary incontinence, generalized anxiety disorder and fibromyalgia. Duloxetine achieves a maximum plasma concentration (C(max)) of approximately 47 ng/mL (40 mg twice-daily dosing) to 110 ng/mL (80 mg twice-daily dosing) approximately 6 hours after dosing. The elimination half-life of duloxetine is approximately 10-12 hours and the volume of distribution is approximately 1640 L.
View Article and Find Full Text PDFThis study evaluated the pharmacodynamics and pharmacokinetics of once-daily dosing of warfarin at steady state when taken concomitantly with once-daily doses of duloxetine. Healthy subjects with a stable international normalized ratio (INR) of 1.5 to 2.
View Article and Find Full Text PDFObjective: To determine whether duloxetine is a substrate, inhibitor or inducer of cytochrome P450 (CYP) 1A2 enzyme, using in vitro and in vivo studies in humans.
Methods: Human liver microsomes or cells with expressed CYP enzymes and specific CYP inhibitors were used to identify which CYP enzymes catalyse the initial oxidation steps in the metabolism of duloxetine. The potential of duloxetine to inhibit CYP1A2 activity was determined using incubations with human liver microsomes and phenacetin, the CYP1A2 substrate.
Objective: The purpose of this study was to characterize duloxetine pharmacokinetics in the breast milk and plasma of lactating women and to estimate the duloxetine dose that an infant might consume if breastfed.
Methods: This open-label study included six healthy women aged 22-35 years who stopped nursing during and after the study. Duloxetine 40 mg was given orally every 12 hours for 3.
The effects of supratherapeutic dosages of duloxetine, a serotonin and norepinephrine reuptake inhibitor, on blood pressure and pulse rate were assessed in a multicenter, double-blind, randomized, placebo-controlled, crossover study in 117 healthy women aged 19 to 74 years. Dosages were escalated from 60 mg twice daily (BID) to 200 mg BID over 16 days. Vital signs were monitored at baseline, before morning dosing, and sequentially at steady state.
View Article and Find Full Text PDFBackground: The electrophysiological effects of duloxetine at supratherapeutic exposures were evaluated to ensure compliance with regulatory criteria and to assess the QT prolongation potential.
Methods: Electrocardiograms were collected in a multicenter, double-blind, randomized, placebo-controlled, crossover study that enrolled 117 healthy female subjects aged 19 to 74 years. Duloxetine dosages escalated from 60 mg twice daily to 200 mg twice daily; a single moxifloxacin 400 mg dose was used as a positive control.