Recurrent exposures to a pathogenic antigen remodel the CD8 T cell compartment and generate a functional memory repertoire that is polyclonal and complex. At the clonotype level, the response to the conserved influenza antigen, M1 has been well characterized in healthy individuals, but not in patients receiving immunosuppressive therapy or with aberrant immunity, such as those with juvenile idiopathic arthritis (JIA). Here we show that patients with JIA have a reduced number of M1 specific RS/RA clonotypes, indicating decreased clonal richness and, as a result, have lower repertoire diversity.
View Article and Find Full Text PDFBackground: Despite the accessibility of blood, identification of systemic biomarkers associated with cancer progression has been especially challenging. The aim of this study was to determine a difference in baseline serum immune signatures in patients that experienced early pancreatic ductal adenocarcinoma (PDAC) metastasis compared with patients that did not. We hypothesized that immune mediators would differ in the baseline serum of these patient cohorts.
View Article and Find Full Text PDFInhibitory cell surface proteins on T cells are often dynamically regulated, which contributes to their physiologic function. PECAM-1 (CD31) is an inhibitory receptor that facilitates TGF-β-mediated suppression of T cell activity. It is well established in CD4 T cells that PECAM-1 is expressed in naïve recent thymic emigrants, but is down-regulated after acute T cell activation and absent from memory cells.
View Article and Find Full Text PDFAdoptive cell therapy (ACT) of chimeric antigen receptor T cells has demonstrated remarkable success for the treatment of pediatric B-cell leukemia. For patients who are not candidates for chimeric antigen receptor T-cell therapy, ACT using tumor antigen-experienced polyclonal T cells may be a treatment option. Since leukemic blasts reside in the bone marrow and bone marrow is a preferred site for homeostatic proliferation of cytotoxic memory CD8 T cells, we hypothesized that bone marrow would be a source of activated T cells.
View Article and Find Full Text PDFEfforts to improve the efficacy of adoptive T-cell therapies and immune checkpoint therapies in myelogenous leukemia are desired. In this study, we evaluated the antileukemia activity of adoptively transferred polyclonal cancer antigen-reactive T cells deficient in the regulator diacylglycerol kinase zeta (DGKζ) with or without PD-1/PD-L1 blockade. In the C1498 mouse model of myeloid leukemia, we showed that leukemia was eradicated more effectively in DGKζ-deficient (DGKζ) mice than wild-type mice.
View Article and Find Full Text PDFBackground: Adoptive cellular therapy (ACT) with cancer antigen-reactive T cells following lymphodepletive pre-conditioning has emerged as a potentially curative therapy for patients with advanced cancers. However, identification and enrichment of appropriate T cell subsets for cancer eradication remains a major challenge for hematologic cancers.
Methods: PD-1 and PD-1 T cell subsets from myeloma-bearing mice were sorted and analyzed for myeloma reactivity in vitro.
Substantial experimental evidence has shown that dedifferentiation from an epithelial state to a mesenchymal-like state (EMT) drives tumor cell metastasis. This transition facilitates tumor cells to acquire motility and invasive features. Intriguingly, tumor cells at the metastatic site are primarily epithelial, and it is believed that they differentiate back to an epithelial state by a process called mesenchymal to epithelial transition (MET).
View Article and Find Full Text PDFBackground: Neuroblastoma is a pediatric cancer of neural crest origin. Despite aggressive treatment, mortality remains at 40 % for patients with high-risk disseminated disease, underscoring the need to test new combinations of therapies. In murine tumor models, our laboratory previously showed that T cell-mediated anti-tumor immune responses improve in the context of lymphopenia.
View Article and Find Full Text PDFBackground: Multiple myeloma is characterized by the presence of transformed neoplastic plasma cells in the bone marrow and is generally considered to be an incurable disease. Successful treatments will likely require multi-faceted approaches incorporating conventional drug therapies, immunotherapy and other novel treatments. Our lab previously showed that a combination of transient lymphodepletion (sublethal whole body irradiation) and PD-1/PD-L1 blockade generated anti-myeloma T cell reactivity capable of eliminating established disease.
View Article and Find Full Text PDFEarly phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation.
View Article and Find Full Text PDFWhen tumor vaccines are administered as cancer immunotherapy, cellular interactions at the vaccine site are crucial to the generation of antitumor immunity. Examining interactions at the vaccine site could provide important insights to the success or failure of vaccination. Our laboratory previously showed that while administration of a cell-based vaccine to tumor-free mice leads to productive antineuroblastoma immunity, vaccination of tumor-bearing mice does not.
View Article and Find Full Text PDFTumors are composed of heterogeneous populations of cells including tumor-initiating cells (TICs) and metastatic precursors. While the origin of these cells is unknown, there is evidence that tumor cells can transdifferentiate from an epithelial to a mesenchymal phenotype, a property referred to as epithelial-to-mesenchymal transition (EMT). This cellular plasticity may explain the heterogeneous nature of tumors and differences in the tumorigenic and invasive properties of cells.
View Article and Find Full Text PDFA multifaceted immunotherapeutic strategy that includes hematopoietic stem cell (HSC) transplantation, T-cell adoptive transfer, and tumor vaccination can effectively eliminate established neuroblastoma tumors in mice. In vivo depletion of CD4⁺ T cells in HSC transplantation recipients results in increased antitumor immunity when adoptively transferred T cells are presensitized, but development of T-cell memory is severely compromised. Because increased percentages of regulatory T (Treg) cells are seen in HSC transplantation recipients, here we hypothesized that the inhibitory effect of CD4⁺ T cells is primarily because of the presence of expanded Treg cells.
View Article and Find Full Text PDFHigh-risk neuroblastoma remains a clinically challenging disease. Here, we report that a multifaceted immunotherapeutic approach including syngeneic hematopoietic stem cell transplantation (HSCT), adoptive transfer of sensitized T cells (from syngeneic donors vaccinated to tumor antigens), and early posttransplantation tumor vaccination can effectively treat mice with established neuroblastoma. Vaccination was an important component of this immunotherapy, as it resulted in enhanced and prolonged tumor-specific CD8 T-cell activity and improved antitumor efficacy.
View Article and Find Full Text PDFThe goal of this study was to show that nonviral gene transfection technology can be used to genetically modify neuroblastoma cells with immune stimulatory molecules, and that the modified cells can generate an antitumor immune response. The authors found that an electroporation-based gene transfection method, nucleofection, could be used to modify mouse AGN2a (an aggressive variant of Neuro-2a) neuroblastoma cells to simultaneously express as many as four different immune stimulatory molecules encoded by separate plasmid vectors. Within 18 hours after nucleofection, greater than 60% of the cells typically expressed the transfected gene products, and the percentages of cells expressing the products often exceeded 96%.
View Article and Find Full Text PDFBackground: The production of cell-based cancer vaccines by gene vectors encoding proteins that stimulate the immune system has advanced rapidly in model systems. We sought to develop non-viral transfection methods that could transform patient tumor cells into cancer vaccines, paving the way for rapid production of autologous cell-based vaccines.
Methods: As the extended culture and expansion of most patient tumor cells is not possible, we sought to first evaluate a new technology that combines electroporation and chemical transfection in order to determine if plasmid-based gene vectors could be instantaneously delivered to the nucleus, and to determine if gene expression was possible in a cell-cycle independent manner.
In the ciliated protozoan Tetrahymena thermophila, extensive DNA elimination is associated with differentiation of the somatic macronucleus from the germline micronucleus. This study describes the isolation and complete characterization of Tlr elements, a family of approximately 30 micronuclear DNA sequences that are efficiently eliminated from the developing macronucleus. The data indicate that Tlr elements are comprised of an approximately 22 kb internal region flanked by complex and variable termini.
View Article and Find Full Text PDF